scholarly journals Different inactivation behaviors and mechanisms of representative pathogens (Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C3N4-based metal-free visible-light-enabled photocatalytic disinfection

2021 ◽  
Vol 755 ◽  
pp. 142588 ◽  
Author(s):  
Chi Zhang ◽  
Yi Li ◽  
Chao Wang ◽  
Xinyi Zheng
Author(s):  
Ibrahim S. I. Al-Adham ◽  
Sehar Wani ◽  
Elham Al-Kaissi ◽  
Phillip J. Collier

Objectives: The aim of this study was to determine if it is possible to establish and maintain a binary biofilm consisting of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria, which could be used as a multi-species model for antibiotic action studies. Materials and Methods: A medium controlled, continuous culture biofilm model was developed based upon the previously developed Sorbarod™ model. This new model was designed to enable the growth of B. subtilis and E. coli at the same time without either out-competing the other. Results: A pseudo-steady-state binary biofilm was established, which could be maintained for a total of 53 hours. This biofilm was tested to confirm the ability of the biofilm model to support the growth of a Gram-positive (Bacillus subtilis) and a Gram-negative (Escherichia coli) bacterial species under the same conditions of media throughput, aeration and temperature. Conclusions: This paper gives evidence of the ability to develop and control binary biofilm models to maintain the growth of two Gram-dissimilar species of bacteria. We believe this is a novel concept and will aid the future in vitro assessment of antibiotic activity in coinfection models.


Sign in / Sign up

Export Citation Format

Share Document