scholarly journals Synergy of inelastic and elastic energy loss: Temperature effects and electronic stopping power dependence

2016 ◽  
Vol 110 ◽  
pp. 2-5 ◽  
Author(s):  
Eva Zarkadoula ◽  
Haizhou Xue ◽  
Yanwen Zhang ◽  
William J. Weber
2020 ◽  
Vol 7 (11) ◽  
pp. 200925
Author(s):  
Natalia E. Koval ◽  
Fabiana Da Pieve ◽  
Emilio Artacho

Motivated by the radiation damage of solar panels in space, firstly, the results of Monte Carlo particle transport simulations are presented for proton impact on triple-junction Ga 0.5 In 0.5 P/GaAs/Ge solar cells, showing the proton projectile penetration in the cells as a function of energy. It is followed by a systematic ab initio investigation of the electronic stopping power (ESP) for protons in different layers of the cell at the relevant velocities via real-time time-dependent density functional theory calculations. The ESP is found to depend significantly on different channelling conditions, which should affect the low-velocity damage predictions, and which are understood in terms of impact parameter and electron density along the path. Additionally, we explore the effect of the interface between the layers of the multilayer structure on the energy loss of a proton, along with the effect of strain in the lattice-matched solar cell. Both effects are found to be small compared with the main bulk effect. The interface energy loss has been found to increase with decreasing proton velocity, and in one case, there is an effective interface energy gain.


1986 ◽  
Vol 1 (2) ◽  
pp. 231-233 ◽  
Author(s):  
R.G. Stokstad ◽  
P.M. Jacobs ◽  
I. Tserruya ◽  
L. Sapir ◽  
G. Mamane

The ability of heavy-ion beams to enhance the adhesion of thin metallic films to substrates has been studied as a function of projectile species. Measurements of the adhesion enhancement of a thin gold film to substrates of tantalum and silicon (with native oxides) have been made for beams of 12C, 16O, 28Si, 35Cl, and 58Ni at 2.85 MeV/nucleon. The threshold dose required to pass the Scotch tape peel test was found for the Au-Ta system to be D th (cm−2) = 1017 (dE / dx)−3±0.2 where dE/dx is the electronic stopping power (MeV mg−1 cm−2) of the ion in Au. For the Au-Si system, Dth = 6×1018 (dE/dx)−4.1±0.3. The steep dependence of D th on dE/dx found here is in contrast with an earlier measurement for the Au-Ta system by Tombrello et al. The adhesion enhancement was observed to decrease with time after the bombardment in a manner suggesting that diffusion of atoms through the gold film is important. The possible importance of small concentrations of extraneous atoms at the interface is discussed.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


1994 ◽  
Vol 66 (1-3) ◽  
pp. 231-234 ◽  
Author(s):  
N. Nath ◽  
O.P. Dahinwal ◽  
A. Bhagwat ◽  
D.K. Avasthi ◽  
V. Harikumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document