Lysophosphatidic acid and sphingosine 1-phosphate biology: the role of lipid phosphate phosphatases

2004 ◽  
Vol 15 (5) ◽  
pp. 491-501 ◽  
Author(s):  
Susan Pyne ◽  
Kok-Choi Kong ◽  
Peter I Darroch
2021 ◽  
Vol 22 (17) ◽  
pp. 9575
Author(s):  
Anu Jose ◽  
Petra C. Kienesberger

Besides serving as a structural membrane component and intermediate of the glycerolipid metabolism, lysophosphatidic acid (LPA) has a prominent role as a signaling molecule through its binding to LPA receptors at the cell surface. Extracellular LPA is primarily produced from lysophosphatidylcholine (LPC) through the activity of secreted lysophospholipase D, autotaxin (ATX). The degradation of extracellular LPA to monoacylglycerol is mediated by lipid phosphate phosphatases (LPPs) at the cell membrane. This review summarizes and interprets current literature on the role of the ATX-LPA-LPP3 axis in the regulation of energy homeostasis, insulin function, and adiposity at baseline and under conditions of obesity. We also discuss how the ATX-LPA-LPP3 axis influences obesity-related metabolic complications, including insulin resistance, fatty liver disease, and cardiomyopathy.


2000 ◽  
Vol 276 (7) ◽  
pp. 4611-4621 ◽  
Author(s):  
Shelley B. Hooks ◽  
Webster L. Santos ◽  
Dong-Soon Im ◽  
Christopher E. Heise ◽  
Timothy L. Macdonald ◽  
...  

2001 ◽  
Vol 29 (6) ◽  
pp. 825-830 ◽  
Author(s):  
C. Pilquil ◽  
Z.-C. Ling ◽  
I. Singh ◽  
K. Buri ◽  
Q.-X. Zhang ◽  
...  

The serum-derived lipid growth factors, lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P), activate cells selectively through different members of a family of endothelial differentiation gene (EDG) receptors. Activation of EDG receptors by LPA and S1P provides a variety of signalling cascades depending upon the G-protein coupling of the different EDG receptors. This leads to chemotactic and mitogenic responses, which are important in wound healing. For example, LPA stimulates fibroblast division and S1P stimulates the chemotaxis and division of endothelial cells leading to angiogenesis. Counteracting these effects of LPA and S1P, are the actions of lipid phosphate phosphatases (LPP, or phosphatidate phosphohydrolases, Type 2). The isoform LPP-1 is expressed in the plasma membrane with its active site outside the cell. This enzyme is responsible for ‘ecto-phosphatase’ activity leading to the degradation of exogenous lipid phosphate mediators, particularly LPA. Expression of LPP-1 decreases cell activation by exogenous LPA. The mechanism for this is controversial and several mechanisms have been proposed. Evidence will be presented that the LPPs cross-talk with EDG and other growth factor receptors, thus, regulating the responses of the cells to lipid phosphate mediators of signal transduction.


2008 ◽  
Vol 411 (2) ◽  
pp. 371-377 ◽  
Author(s):  
Jaclyn S. Long ◽  
Nigel J. Pyne ◽  
Susan Pyne

Lipid phosphate phosphatases (LPP1–LPP3) have been topographically modelled as monomers (molecular mass of 31–36 kDa) composed of six transmembrane domains and with the catalytic site facing the extracellular side of the plasma membrane or the luminal side of intracellular membranes. The catalytic motif has three conserved domains, termed C1, C2 and C3. The C1 domain may be involved in substrate recognition, whereas C2 and C3 domains appear to participate in the catalytic dephosphorylation of the substrate. We have obtained three lines of evidence to demonstrate that LPPs exist as functional oligomers. First, we have used recombinant expression and immunoprecipitation analysis to demonstrate that LPP1, LPP2 and LPP3 form both homo- and hetero-oligomers. Secondly, large LPP oligomeric complexes that are catalytically active were isolated using gel-exclusion chromatography. Thirdly, we demonstrate that catalytically deficient guinea-pig FLAG-tagged H223L LPP1 mutant can form an oligomer with wild-type LPP1 and that wild-type LPP1 activity is preserved in the oligomer. These findings suggest that, in an oligomeric arrangement, the catalytic site of the wild-type LPP can function independently of the catalytic site of the mutant LPP. Finally, we demonstrate that endogenous LPP2 and LPP3 form homo- and hetero-oligomers, which differ in their subcellular localization and which may confer differing spatial regulation of phosphatidic acid and sphingosine 1-phosphate signalling.


2005 ◽  
Vol 33 (6) ◽  
pp. 1370-1374 ◽  
Author(s):  
S. Pyne ◽  
J.S. Long ◽  
N.T. Ktistakis ◽  
N.J. Pyne

Mammalian LPPs (lipid phosphate phosphatases) are integral membrane proteins that belong to a superfamily of lipid phosphatases/phosphotransferases. They have broad substrate specificity in vitro, dephosphorylating PA (phosphatidic acid), S1P (sphingosine 1-phosphate), LPA (lysophosphatidic acid) etc. Their physiological role may include the attenuation of S1P- and LPA-stimulated signalling by virtue of an ecto-activity (i.e. dephosphorylation of extracellular S1P and LPA), thereby limiting the activation of LPA- and S1P-specific G-protein-coupled receptors at the cell surface. However, our recent work suggests that an intracellular action of LPP2 and LPP3 may account for the reduced agonist-stimulated p42/p44 mitogen-activated protein kinase activation of HEK-293 (human embryonic kidney 293) cells. This may involve a reduction in the basal levels of PA and S1P respectively and the presence of an early apoptotic phenotype under conditions of stress (serum deprivation). Additionally, we describe a model whereby LPP2, but not LPP3, may be functionally linked to the phospholipase D1-derived PA-dependent recruitment of sphingosine kinase 1 to the perinuclear compartment. We also consider the potential regulatory mechanisms for LPPs, which may involve oligomerization. Lastly, we highlight many aspects of the LPP biology that remain to be fully defined.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1263 ◽  
Author(s):  
Xiaoyun Tang ◽  
David N. Brindley

Lipid phosphate phosphatases (LPPs) are a group of three enzymes (LPP1–3) that belong to a phospholipid phosphatase (PLPP) family. The LPPs dephosphorylate a wide spectrum of bioactive lipid phosphates, among which lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P) are two important extracellular signaling molecules. The LPPs are integral membrane proteins, which are localized on plasma membranes and intracellular membranes, including the endoplasmic reticulum and Golgi network. LPPs regulate signaling transduction in cancer cells and demonstrate different effects in cancer progression through the breakdown of extracellular LPA and S1P and other intracellular substrates. This review is intended to summarize an up-to-date understanding about the functions of LPPs in cancers.


Sign in / Sign up

Export Citation Format

Share Document