Effect of cold air stream injection on cyclone performance at high temperature

2017 ◽  
Vol 183 ◽  
pp. 293-303 ◽  
Author(s):  
An-Ni Huang ◽  
Norio Maeda ◽  
Satoshi Sunada ◽  
Tomonori Fukasawa ◽  
Hideto Yoshida ◽  
...  
Keyword(s):  
Cold Air ◽  
Author(s):  
Bharath Viswanath Ravi ◽  
Mukilan Sebastiraj Michael ◽  
S. Audithya Krishna ◽  
Lakshmanan Arunachalam ◽  
Suresh Mariappan

Thermosyphons are self-actuated heat transport systems in which the circulation of the working fluid is brought about by a combination of gravity and buoyant forces. In the recent years, thermosyphons have been considered for widely diverse heat recovery applications, especially in HVAC systems. In this work, a systematic approach for design and analysis of finned air-air thermosyphon heat exchanger system based on effectiveness-NTU method is presented. Furthermore, the effect of mass flow ratio of the hot and cold air stream, temperature difference between the hot and cold air streams, transverse tube spacing, fin spacing and length of the thermosyphon on the effectiveness of the system is predicted by numerical simulation. In addition, the thermal performance of unfinned thermosyphon heat exchanger system has also been investigated experimentally.


2018 ◽  
Vol 17 (2) ◽  
pp. 17
Author(s):  
Nawaf H Saeid ◽  
Bashir S. Abusahmin

The present study investigates the parameters controlling the cooling process of acylindrical food in the storage area for a period of time. Transient analysis of theconduction and convection (conjugate) heat transfer from a cylindrical food, or acylindrical can filled with food is selected for numerical simulations. The cylinder isbounded by an adiabatic wall and the cold air is flowing normal to the cylinder axis (crossflow). The parameters investigated are: Reynolds number, food thermal properties(density, specific heat and thermal conductivity) and the cooling period. The range of theReynolds number is selected from 50 to 500 to be in laminar flow conditions. Threedifferent materials were selected according their thermal properties. The results arepresented to show the cooling process starting from blowing cold air stream on thecylinder for a period of 4 hours. The results show that the food with low thermal inertia iscooled faster than that of high thermal inertia. The present results show also that thecooling process can be shortened by increasing the air velocity and lower its temperature.


2004 ◽  
Vol 127 (3) ◽  
pp. 683-692 ◽  
Author(s):  
Ling Cui ◽  
J. G. Brisson

Preliminary design and performance calculations for a silicon-based micro Rankine machine are discussed. The designs considered draw heat from a high temperature air stream with inlet temperatures between 770 and 1000K and reject heat to an ambient air stream at 300K. Most of the designs have a typical footprint of 6cm2. Water and benzene are considered as working fluids. Effects of the limits of heat exchanger and turbomachinery performance are analyzed and discussed. The designs of two types of heat exchangers (hole type and fin type) are described in detail. Their respective performances are compared. The calculations indicate that a machine with a 6cm2 footprint area is capable of delivering in excess of 40W of shaft power.


2015 ◽  
Vol 1095 ◽  
pp. 736-740
Author(s):  
Xiao Yan Guan ◽  
Ai Sheng Wu

Based on pool film boiling, the model of boiling and vaporization to heat transfer is established When droplet jet into cutting zone to cool high temperature wall. Through the transient experiment of cryogenic gas atomization jet cooling high temperature nickel-base alloys and Titanium alloys surface with different water dose. The water dose achieving the best cooling effect is obtained at different temperature on surface of Nickel based alloys and TI-alloy. It is indicated that the water dose to the best cooling effect must be equivalent to the amount of water that materials can vaporize and participate in the phase change heat transfer under certain temperature. When achieving optimal cooling effect, the amount of droplets participating in phase change heat transfer to cool high temperature wall are the most , while comparing the cold air cooling effect and spraying cooling effect at low and high temperature. Result is that either low or high temperature, spraying cooling effect is superior than cold air cooling effect, but at a specific temperature, no lower the temperature of air, the better cooling effect, there is also an optimal air temperature values.


Sign in / Sign up

Export Citation Format

Share Document