scholarly journals Sus Scrofa immune tissues as a new source of bioactive substances for skin wound healing

Author(s):  
Alexandr Basov ◽  
Liliya Fedulova ◽  
Ekaterina Vasilevskaya ◽  
Ekaterina Trofimova ◽  
Nataliya Murashova ◽  
...  
Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 697 ◽  
Author(s):  
Faming Yang ◽  
Xiaoming Qin ◽  
Ting Zhang ◽  
Chaohua Zhang ◽  
Haisheng Lin

Skin wound healing, especially chronic wound healing, is a common challenging clinical problem. It is urgent to broaden the sources of bioactive substances that can safely and efficiently promote skin wound healing. This study aimed to observe the effects of active peptides (APs) of the mantle of Pinctada martensii on wound healing. After physicochemical analysis of amino acids and mass spectrometry of APs, the effect of APs on promoting healing was studied through a whole cortex wound model on the back of mice for 18 consecutive days. The results showed that APs consisted of polypeptides with molecular weights in the range 302.17–2936.43 Da. The content of polypeptides containing 2–15 amino acids accounted for 73.87%, and the hydrophobic amino acids accounted for 56.51%. Results of in vitro experimentation showed that mice in APs-L group which were fed a low dose of APs (0.5 g/kg bw) had a shortened epithelialization time due to a shortening inflammatory period (p < 0.05). Mechanistically, this relied on its specific ability to promote the proliferation of CD31, FGF and EGF which accelerated the percentage of wound closure. Moreover, the APs-L group mice had enhanced collagen synthesis and increased type III collagen content in their wounds through a TGF-β/Smad signaling pathway (p > 0.05). Consequently, scar formation was inhibited and wound healing efficiency was significantly improved. These results show that the APs of Pinctada martensii promote dermal wound healing in mice and have tremendous potential for development and utilization in skin wound healing.


2019 ◽  
Vol 28 (4) ◽  
pp. 472-479 ◽  
Author(s):  
Chein‐Hong Lin ◽  
Po‐Yuan Chiu ◽  
Yuan‐Yu Hsueh ◽  
Shyh‐Jou Shieh ◽  
Chia‐Ching Wu ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4231 ◽  
Author(s):  
Faming Yang ◽  
Xiaoming Qin ◽  
Ting Zhang ◽  
Haisheng Lin ◽  
Chaohua Zhang

Skin wound healing, especially chronic wound healing, is a common challenging clinical problem. It is urgent to broaden the sources of bioactive substances that can safely and efficiently promote skin wound healing. This study aimed to observe the effects of small molecular peptides (SMPs) of the mantle of Pinctada martensii on wound healing. After physicochemical analysis of amino acids and mass spectrometry of SMPs, the effect of SMPs on promoting healing was studied through a whole cortex wound model on the back of mice for 18 consecutive days. The results showed that SMPs consisted of polypeptides with a molecular weight of 302.17–2936.43 Da. The content of polypeptides containing 2–15 amino acids accounted for 73.87%, and the hydrophobic amino acids accounted for 56.51%. Results of in vitro experimentation showed that SMPs possess a procoagulant effect, but no antibacterial activity. Results of in vivo experiments indicated that SMPs inhibit inflammatory response by secretion of anti-inflammatory factor IL-10 during the inflammatory phase; during the proliferative phase, SMPs promote the proliferation of fibroblasts and keratinocytes. The secretion of transforming growth factor-β1 and cyclin D1 accelerates the epithelialization and contraction of wounds. In the proliferative phase, SMPs effectively promote collagen deposition and partially inhibit superficial scar hyperplasia. These results show that SMPs promotes dermal wound healing in mice and have a tremendous potential for development and utilization in skin wound healing.


2019 ◽  
Vol 20 (15) ◽  
pp. 3679 ◽  
Author(s):  
Lin Chen ◽  
Alyne Simões ◽  
Zujian Chen ◽  
Yan Zhao ◽  
Xinming Wu ◽  
...  

Wounds within the oral mucosa are known to heal more rapidly than skin wounds. Recent studies suggest that differences in the microRNAome profiles may underlie the exceptional healing that occurs in oral mucosa. Here, we test whether skin wound-healing can be accelerating by increasing the levels of oral mucosa-specific microRNAs. A panel of 57 differentially expressed high expresser microRNAs were identified based on our previously published miR-seq dataset of paired skin and oral mucosal wound-healing [Sci. Rep. (2019) 9:7160]. These microRNAs were further grouped into 5 clusters based on their expression patterns, and their differential expression was confirmed by TaqMan-based quantification of LCM-captured epithelial cells from the wound edges. Of these 5 clusters, Cluster IV (consisting of 8 microRNAs, including miR-31) is most intriguing due to its tissue-specific expression pattern and temporal changes during wound-healing. The in vitro functional assays show that ectopic transfection of miR-31 consistently enhanced keratinocyte proliferation and migration. In vivo, miR-31 mimic treatment led to a statistically significant acceleration of wound closure. Our results demonstrate that wound-healing can be enhanced in skin through the overexpression of microRNAs that are highly expressed in the privileged healing response of the oral mucosa.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 457
Author(s):  
Andreu Blanquer ◽  
Jana Musilkova ◽  
Elena Filova ◽  
Johanka Taborska ◽  
Eduard Brynda ◽  
...  

Chronic wounds affect millions of patients worldwide, and it is estimated that this number will increase steadily in the future due to population ageing. The research of new therapeutic approaches to wound healing includes the development of nanofibrous meshes and the use of platelet lysate (PL) to stimulate skin regeneration. This study considers a combination of a degradable electrospun nanofibrous blend of poly(L-lactide-co-ε-caprolactone) and poly(ε-caprolactone) (PLCL/PCL) membranes (NF) and fibrin loaded with various concentrations of PL aimed at the development of bioactive skin wound healing dressings. The cytocompatibility of the NF membranes, as well as the effect of PL, was evaluated in both monocultures and co-cultures of human keratinocytes and human endothelial cells. We determined that the keratinocytes were able to adhere on all the membranes, and their increased proliferation and differentiation was observed on the membranes that contained fibrin with at least 50% of PL (Fbg + PL) after 14 days. With respect to the co-culture experiments, the membranes with fibrin with 20% of PL were observed to enhance the metabolic activity of endothelial cells and their migration, and the proliferation and differentiation of keratinocytes. The results suggest that the newly developed NF combined with fibrin and PL, described in the study, provides a promising dressing for chronic wound healing purposes.


2021 ◽  
pp. 100099
Author(s):  
Ana Clara Sans Salomão Brunow Ventura ◽  
Thalita de Paula ◽  
Jenifer Pendiuk Gonçalves ◽  
Bruna da Silva Soley ◽  
Ananda Beatriz Munhoz Cretella ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1219
Author(s):  
Luca Melotti ◽  
Tiziana Martinello ◽  
Anna Perazzi ◽  
Ilaria Iacopetti ◽  
Cinzia Ferrario ◽  
...  

Skin wound healing is a complex and dynamic process that aims to restore lesioned tissues. Collagen-based skin substitutes are a promising treatment to promote wound healing by mimicking the native skin structure. Recently, collagen from marine organisms has gained interest as a source for producing biomaterials for skin regenerative strategies. This preliminary study aimed to describe the application of a collagen-based skin-like scaffold (CBSS), manufactured with collagen extracted from sea urchin food waste, to treat experimental skin wounds in a large animal. The wound-healing process was assessed over different time points by the means of clinical, histopathological, and molecular analysis. The CBSS treatment improved wound re-epithelialization along with cell proliferation, gene expression of growth factors (VEGF-A), and development of skin adnexa throughout the healing process. Furthermore, it regulated the gene expression of collagen type I and III, thus enhancing the maturation of the granulation tissue into a mature dermis without any signs of scarring as observed in untreated wounds. The observed results (reduced inflammation, better re-epithelialization, proper development of mature dermis and skin adnexa) suggest that sea urchin-derived CBSS is a promising biomaterial for skin wound healing in a “blue biotechnologies” perspective for animals of Veterinary interest.


Sign in / Sign up

Export Citation Format

Share Document