Dynamic response of a flexible pavement submitted by impulsive loading

2009 ◽  
Vol 29 (5) ◽  
pp. 845-854 ◽  
Author(s):  
B. Picoux ◽  
A. El Ayadi ◽  
C. Petit
2012 ◽  
Vol 43 ◽  
pp. 1-5 ◽  
Author(s):  
Xiaodong Cui ◽  
Longmao Zhao ◽  
Zhihua Wang ◽  
Han Zhao ◽  
Daining Fang

Author(s):  
V. Sabelkin

Different modern shell structures are exposed to impulsive loading very often. Some of them may have different imperfections such as apertures, welds, and irregular thickness. These structures can be made by static or impulsive loading. To know fractureless dynamic response of shell structures with apertures is important in many cases, especially for forming processes, because of the first appeared fracture can extend through a shell blank especially if material is brittle with low plastic properties. The tooling for impact and static loading of flat and shell structures was developed. Dynamic response of shell structures with unsupported apertures on internal impulsive loading by point high explosive charges is described. Strain state of shaped shell structures with apertures after explosive forming is shown. The limit aperture diameter for dynamic fractureless response is determined. Distributions of strain intensities on a sample cross section for different aperture diameters, static and dynamic loading are shown. Different jet engine parts were made using developed technology.


2015 ◽  
Vol 21 (1(92)) ◽  
pp. 15-19 ◽  
Author(s):  
M.G. Shulzhenko ◽  
◽  
B.P. Zajtsev ◽  
P.P. Gontarovskyi ◽  
T.V. Protasova ◽  
...  

Author(s):  
Erik Jan de Ridder ◽  
Pieter Aalberts ◽  
Joris van den Berg ◽  
Bas Buchner ◽  
Johan Peeringa

The effects of operational loads and wind loads on offshore monopile wind turbines are well understood. For most sites, however, the water depth is such that breaking or near-breaking waves will occur causing impulsive excitation of the monopile and consequently considerable stresses and displacements in the monopile, tower and turbine. To investigate this, pilot model tests were conducted with a special model of an offshore wind turbine with realistic flexibility tested in (extreme) waves. This flexibility was considered to be necessary for two reasons: the impulsive loading of extreme waves is very complex and there can be an interaction between this excitation and the dynamic response of the foundation and tower. The tests confirmed the importance of the topic of breaking waves: horizontal accelerations of more than 0.5g were recorded at nacelle level in extreme cases.


Sign in / Sign up

Export Citation Format

Share Document