Influence of interactions between topographic and soil layer amplification on seismic response of sliding mass and slope displacement

2020 ◽  
Vol 129 ◽  
pp. 105901 ◽  
Author(s):  
Jian Song ◽  
Yufeng Gao ◽  
Tugen Feng
2018 ◽  
Vol 7 (3.10) ◽  
pp. 50
Author(s):  
T Subramani ◽  
E Narendra Kumar

Retaining systems are widely used international for serving numerous functions in structures and infrastructures. The seismic response of forms of walls that assist a single soil layer has been examined with the aid of some of researchers in the past. The design of preserving partitions in seismic areas poses a complex problem. The conventional layout method usually contains calculation of an element of safety in opposition to sliding, overturning and bearing ability failure. Retaining partitions have suffered damages under beyond earthquakes. Typically the analyses do not bear in mind the retained soil’s interplay with the wall, which takes location at some point of dynamic conditions. The situations of separation of wall (at some point of interactions) over again trade the dynamic traits of the assumed wall-soil interplay that needs to be addressed. Our study conducts the retaining wall beneath static in addition to seismic situations about above components.  


1969 ◽  
Vol 59 (1) ◽  
pp. 1-22
Author(s):  
Apostol Poceski

Abstract Damage distribution in Skopje can be explained in terms of the seismic response of surficial soils. There exists a generally good correlation between the distribution of damage, the thickness of the surficial soil layer, and the predominant periods of microtremors. The most heavily damaged region is covered with about 20 to 30 meters of alluvium, and the predominant period of this alluvium is about 0.36 seconds. The alluvium in this heavily damaged region probably was shaken near its resonant frequency, and soil amplification may have reached three. The greatest destruction was recorded along a belt which is defined by an abrupt change of the thickness of the alluvium. However, heavy destruction was also recorded on the shallow alluvium side, and no clear explanation exists for this.


2012 ◽  
Vol 170-173 ◽  
pp. 984-993
Author(s):  
Xue Liang Chen ◽  
Meng Tan Gao ◽  
Tie Fei Li ◽  
Zhao Lun Yan

Soil dynamic nonlinear experimental results have significant impacts on the seismic response of engineering site, but how reasonable and effective to select soil samples for soil test, there is no good solution. Using detailed drilling velocity, density data, and rich soil test data of Shanxi Linfen Iron and Steel Hospital engineering site, four models are established and are analyzed for this problem. The results showed that: less than 3 meters of soil layer, each layer select one soil sample, for the thick soil layer, the rules of selecting one soil sample about every 3m thickness for the soil test, are recommended. If selecting one soil sample about every 5m~6m thickness for the thick soil layer, the calculation error is about ±10%.


Micropiles are reinforced grouted piles that have small diameters commonly not higher than 30 cm. They are widely used for slope stabilization, controlling structural settlement, and in some cases, as retaining structures. Also, they are used for resisting dynamic uplift loads, seismic retrofit mainly in restrictive and low headroom areas, and retrofitting of historical monuments. The main goal of this research is to develop a finite element model that can capture the different aspects of seismic behavior of multi-story structure supported with deep foundation via using of micropiles. Also, a main target for the executing numerical modelling is to show the influence of the surrounding soil on this system and vice versa. Firstly, a representative two-dimensional finite element model is conducted to represent the soil-structure interaction system under seismic excitation supported with proper boundary conditions in PLAXIS 2D V20 for dynamic analysis based on previous recommendations considering the nonlinear soil behavior. The behavior of micropiles is studied and verified using previous results. Based on these models, the effect of lateral dynamic loads on the response of a structure with different foundation types is investigated. Also, a wide range of parametric studies, considering structure properties, earthquake magnitude, micropile diameter, micropile length, and the number of micropiles, have been carried out in order to investigate the actual interaction between soil, substructure, and superstructures. The study results showed that the seismic response of the structure is highly affected by the properties of the sub-surface soil layer. Consequently and similarly, analysis results established that underpinning using micropiles is an efficient technique for controlling the seismic response of existing structures.


2020 ◽  
Author(s):  
Jingyan Lan ◽  
Juan Liu ◽  
Xing Song

Abstract. In the complex medium system of sea area, the overlying sea water and the surface soft soil have a significant impact on the seafloor ground motion, which brings great seismic risk to the safety of offshore engineering structures. In this paper, four sets of typical free field models are constructed and established, which are land model, land model with surface soft soil, sea model and sea model with surface soft soil. The dynamic finite difference method is used to carry out two-dimensional seismic response analysis of typical free field based on the input forms about P and SV wave. By comparing the seismic response analysis results of four groups of calculation models, the effects of overlying seawater and soft soil on peak acceleration and acceleration response spectrum are studied. The results show that when SV wave is input, the peak acceleration and response spectrum of the surface of soft soil on the surface and the seabed surface can be amplified, while the overlying sea water can significantly reduce the ground motion. When P wave is used, the effect of overlying seawater and soft soil on peak acceleration and response spectrum of surface and seabed can be ignored. The peak acceleration decreases first and then increases from the bottom to the surface, and the difference of peak acceleration calculated by four free field models is not obvious. The results show that the overlying sea water and the surface soft soil layer have little effect on the peak acceleration of ground motion below the surface.


2021 ◽  
Vol 43 (5) ◽  
pp. 150-164
Author(s):  
O. V. Kendzera ◽  
Yu. V. Semenova

The research presented in the work aims to assess the seismic response of three different taxonometric sites, identified by the method of engineering and geological analogies within the territory of Kyiv, to seismic loads with different spectral content and peak amplitude from 0.01 g to 0.06 g. Assessment of the influence of local soil conditions on the intensity of earthquakes is an important task of earthquake-resistant design and construction. The soil layer at the base of the study site acts as a filter on seismic vibrations. It amplifies or attenuates the amplitude of the seismic wave propagating from the bedrock to the free surface. The paper considers the mechanisms of the possible amplification of seismic motions by various soil complexes and methods for calculating the seismic response to seismic loads of various intensities. As an analytical tool for analyzing the response of the taxonometric areas to seismic vibrations (seismic response), an equivalent linear analysis was used, which is comprehensively studied and widely used in engineering seismology. For the selected sites, models of soil strata were built, and graphs of changes with depth of peak shear strain and peak ground acceleration (PGA) were calculated, as well as predicted (expected with a given probability of non-exceeding) amplitude Fourier spectra of seismic motions in the upper layer and the response spectra of single oscillators with 5 % attenuation to seismic effects with a maximum amplitude from 0.01 g to 0.06 g. A comparative analysis of the change in the value of these parameters in individual sections of Kyiv is presented. It is shown that to assess the potential hazard from seismic ground motions during earthquakes, it is necessary to use the maximum number of design parameters that characterize the seismic hazard of specific areas and which are used to determine the seismic resistance of buildings and structures. The most complete seismic hazard for calculating the seismic stability of objects is set by the full vector of seismic motions deployed in time: calculated accelerograms, seismograms and velocigrams. The presented calculation results are planned to be used in solving methodological and practical problems of earthquake protection, which can be realized in different parts of the territory of Kyiv.


Sign in / Sign up

Export Citation Format

Share Document