The study of universality of a method for predicting surface nanocrystallization after high energy shot peening based on finite element analysis

2019 ◽  
Vol 358 ◽  
pp. 617-627 ◽  
Author(s):  
Haiming Huang ◽  
Zhou Wang ◽  
Jin Gan ◽  
Ying Yang ◽  
Xiaoli Wang ◽  
...  
Author(s):  
S. Ghosh ◽  
J. Choi

Despite immense advances in Laser Aided Direct Metal/Material Deposition (LADMD) process many issues concerning the effects of process parameters on the stability of variety of properties and the integrity of microstructure have been reported. Modeling of heat flow seems to be a standard practice to couple heat flow calculations to related macroscopic phenomena such as fluid flow in the melt and solid-liquid mushy region, macrosegregation and thermal stresses. A key component in these models is the coupling between thermal and solute fields. Like macrostructural phenomena even microstructural features such as phase appearance, morphology, grain size or spacing are certainly no less important. The focus of this paper is the solute transport, in particular the manner in which process scale transport is coupled to transport at the local scale of the solid-liquid interface which requires a modeling of the redistribution of solutes at the scale of the secondary arm spaces in the dendritic mushy region. Basic microsegregation models which assume either no mass diffusion in the solid (Gulliver-Scheil) or complete diffusion in the solid (equilibrium lever rule) in a fixed arm space are inappropriate in high energy beam processes involving significantly high cooling rates. This paper aims at incorporating a model that accounts for finite mass diffusion and coarsening of the arm space. Due to the complexity and nonlinearity of LADMD process, analytical solutions can rarely address the practical manufacturing process. Consequently, this is an attempt towards a methodology of finite element analysis to predict solidification microstructure and thermal stresses. The simulation has been carried out for H13 tool steel deposited on a mild steel substrate. However, the program can easily be extended to a wide variety of steels.


2013 ◽  
Vol 471 ◽  
pp. 324-328
Author(s):  
Nawar A. Kadhim ◽  
N. Nik Abdullah ◽  
S. Abdullah ◽  
A.K. Arrifin

The finite element modeling and analysis have been performed to investigate the effects of nitriding, cold rolled and shot peening on fatigue life of an automotive lower suspension arm component which fabricated of SAE1045 steel. The finite element analysis (FEA) results indicate a great effect for all surface finish parameters on fatigue life. It shows that nitriding increased the fatigue life of the component better than shot peening, while cold rolled effect was between them. In a nut shell, nitriding can be considered as the best surface treatment to improve the fatigue life of the automotive lower suspension arm which fabricated of SAE1045 steel.


2021 ◽  
Author(s):  
Faisal Sharaf Siddiqui

Femur fractures are caused by high energy trauma or by musculoskeletal impairments, such as osteoporosis. The presence of total hip replacement (THR) superior to a femoral mid-shaft fracture greatly complicates fixation and treatment. The most conventional fracture fixation method is internal fixation by metal plate and screws. However, metal being stiffer than bone, causes stress shielding and bone resorption. The goal of this study was to evaluate the performance of a less stiff carbon fibre epoxy plate as fracture fixation in an injured and healed femur. IR thermography validated by finite element analysis (FEA) was used to investigate the stress patterns of an injured and healed femur under an average cyclic loading of 800 N at an adduction angle of 7 degrees to simulate the single-legged stance phase of walking. The average stiffness of an injured femur with carbon/epoxy plate was 532.1 N/mm (static) and 625.3 N/mm (dynamic) respectively, that increased to 597.6 N/mm (static) and 697.9 N/mm (dynamic) for the metal plate. For the healed femur, the average stiffness increased from 1660.3 N/mm (static) and 2010.0 N/mm (dynamic) for the carbon/epoxy plate to 1704.4 N/mm (static) and 2070.4 N/mm (dynamic) for the metal plate. IR stress maps for carbon/epoxy and metal plate (injured femur) showed an overall difference of 29.2% for the anterior and posterior sides. This is the first study to assess experimentally and computationally the biomechanical behavior of injured and healed synthetic femur with two different plates construct.


Sign in / Sign up

Export Citation Format

Share Document