Self-assembly of 2,6-dimethylpyridine on Cu(110) directed by weak hydrogen bonding

2007 ◽  
Vol 601 (16) ◽  
pp. L91-L94 ◽  
Author(s):  
Junseok Lee ◽  
Daniel B. Dougherty ◽  
John T. Yates
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4097
Author(s):  
Wooyong Seong ◽  
Hyungwoo Hahm ◽  
Seyong Kim ◽  
Jongwoo Park ◽  
Khalil A. Abboud ◽  
...  

Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding.


RSC Advances ◽  
2021 ◽  
Vol 11 (18) ◽  
pp. 10929-10934
Author(s):  
Chuangui Cao ◽  
Zhihui Zhao ◽  
Yong Qi ◽  
Hui Peng ◽  
Kuanjun Fang ◽  
...  

The solvent, DEA, reduces the dye aggregation that may be caused by the weak hydrogen bonding and relatively smaller steric hindrance effect.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4705
Author(s):  
Boer Liu ◽  
Xi Chen ◽  
Glenn A. Spiering ◽  
Robert B. Moore ◽  
Timothy E. Long

This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2778
Author(s):  
Joseph R. Lane ◽  
Graham C. Saunders

The crystal structure of 4-(2,3,5,6-tetrafluoropyridyl)diphenylphosphine oxide (1) contains two independent molecules in the asymmetric unit. Although the molecules are virtually identical in all other aspects, the P=O bond distances differ by ca. 0.02 Å. In contrast, although tris(pentafluorophenyl)phosphine oxide (2) has a similar crystal structure, the P=O bond distances of the two independent molecules are identical. To investigate the reason for the difference, a density functional theory study was undertaken. Both structures comprise chains of molecules. The attraction between molecules of 1, which comprises lone pair–π, weak hydrogen bonding and C–H∙∙∙arene interactions, has energies of 70 and 71 kJ mol−1. The attraction between molecules of 2 comprises two lone pair–π interactions, and has energies of 99 and 100 kJ mol−1. There is weak hydrogen bonding between molecules of adjacent chains involving the oxygen atom of 1. For one molecule, this interaction is with a symmetry independent molecule, whereas for the other, it also occurs with a symmetry related molecule. This provides a reason for the difference in P=O distance. This interaction is not possible for 2, and so there is no difference between the P=O distances of 2.


Author(s):  
Ganghuo Pan ◽  
Jie Leng ◽  
Liye Deng ◽  
Liwen Xing ◽  
Rui Feng

2003 ◽  
pp. 2278 ◽  
Author(s):  
Jing Tang ◽  
Henrik Birkedal ◽  
Eric W. McFarland ◽  
Galen D. Stucky

2008 ◽  
Vol 8 (6) ◽  
pp. 2996-3002 ◽  
Author(s):  
Liqin Ge ◽  
Xing Wang ◽  
Long Ba ◽  
Zhongze Gu

The hydrogen-bonding multilayered polyelectrolyte capsules with sizes around 6 μm were fabricated by layer-by-layer self-assembly method. The morphology of the obtained capsules was observed with Scanning Electron Microscope (SEM), Confocal Laser Scanning Microscope (CLSM) and Atomic Force Microscope (AFM), respectively. The elastic properties of the capsules were studied with AFM. The capsule was pressed by cantilever with different lengths, a glass bead glued at the end of the cantilever. The force curves were measured on the capsule in air. The Young's modulus of the capsule was obtained (E = 170 MPa for the loading). Results show that this model can predict the elastic deformation of the microcapsule. The accuracy of the elastic deformation of polymer capsule can be ensured using a cantilever of mediate stiffness. Our results show that the existence of the hydrogen-bonding layer makes the multilayered polyelectrolyte harder in comparison with the pure multilayered polyelectrolyte capsules.


Sign in / Sign up

Export Citation Format

Share Document