Nonhomologous end joining: new accessory factors fine tune the machinery

2021 ◽  
Author(s):  
Dipayan Ghosh ◽  
Sathees C. Raghavan
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Miao Guo ◽  
Yina Wang ◽  
Yuyue Tang ◽  
Zijing Chen ◽  
Jinfeng Hou ◽  
...  

AbstractPol μ is capable of performing gap-filling repair synthesis in the nonhomologous end joining (NHEJ) pathway. Together with DNA ligase, misincorporation of dGTP opposite the templating T by Pol μ results in a promutagenic T:G mispair, leading to genomic instability. Here, crystal structures and kinetics of Pol μ substituting dGTP for dATP on gapped DNA substrates containing templating T were determined and compared. Pol μ is highly mutagenic on a 2-nt gapped DNA substrate, with T:dGTP base pairing at the 3ʹ end of the gap. Two residues (Lys438 and Gln441) interact with T:dGTP and fine tune the active site microenvironments. The in-crystal misincorporation reaction of Pol μ revealed an unexpected second dGTP in the active site, suggesting its potential mutagenic role among human X family polymerases in NHEJ.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 379-387 ◽  
Author(s):  
Naoya Shikazono ◽  
Atsushi Tanaka ◽  
Hiroshi Watanabe ◽  
Shigemitsu Tano

Abstract To elucidate the nature of structural alterations in plants, three carbon ion-induced mutations in Arabidopsis thaliana, gl1-3, tt4(C1), and ttg1-21, were analyzed. The gl1-3 mutation was found to be generated by an inversion of a fragment that contained GL1 and Atpk7 loci on chromosome 3. The size of the inverted fragment was a few hundred kilobase pairs. The inversion was found to accompany an insertion of a 107-bp fragment derived from chromosome 2. The tt4(C1) mutation was also found to be due to an inversion. The size of the intervening region between the breakpoints was also estimated to be a few hundred kilobase pairs. In the case of ttg1-21, it was found that a break occurred at the TTG1 locus on chromosome 5, and reciprocal translocation took place between it and chromosome 3. From the sequences flanking the breakpoints, the DNA strand breaks induced by carbon ions were found to be rejoined using, if present, only short homologous sequences. Small deletions were also observed around the breakpoints. These results suggest that the nonhomologous end-joining (NHEJ) pathway operates after plant cells are exposed to ion particles.


Sign in / Sign up

Export Citation Format

Share Document