Arsenic trioxide induces the apoptosis in bone marrow mesenchymal stem cells by intracellular calcium signal and caspase-3 pathways

2010 ◽  
Vol 193 (2) ◽  
pp. 173-178 ◽  
Author(s):  
Ben-Zhi Cai ◽  
Fan-Yu Meng ◽  
Song-Ling Zhu ◽  
Jing Zhao ◽  
Jia-Qi Liu ◽  
...  
2020 ◽  
Vol 10 (6) ◽  
pp. 868-873
Author(s):  
Shengxiang Huang ◽  
Haibo Mei ◽  
Rongguo He ◽  
Kun Liu ◽  
Jin Tang ◽  
...  

The α-calcitonin gene-related peptide (α-CGRP) regulates bone metabolism and has potential applications in enhancing bone remodeling in vivo. However, α-CGRP's role in bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation remain unclear. Rat BMSCs were separated into control group, α-CGRP group and α-CGRP siRNA group, in which BMSCs were transfected with α-CGRP plasmid and α-CGRP siRNA respectively followed by analysis of α-CGRP level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, formation of calcified nodules by alizarin red staining, Smad1 and Smad7 level by Western blot and Runx2 by real time PCR. αCGRP transfection into BMSCs significantly up-regulated CGRP, which could promote cell proliferation, inhibit Caspase 3 activity, promote ALP activity, increase calcified nodules formation and upregulate Smad1, Smad7 and Runx2 compared to control (P < 0.05); transfection of αCGRP siRNA significantly down-regulated CGRP in BMSCs, inhibited cell proliferation, promoted Caspase 3 activity, inhibited ALP activity, inhibited calcified nodules formation and downregulate Smad1, Smad7 and Runx2 (P < 0.05). αCGRP overexpression promotes the Smad/Runx2 signaling, which in turn promotes BMSCs proliferation and osteogenesis. Decreased αCGRP level inhibits Smad/Runx2 signaling, promotes BMSCs apoptosis, inhibits proliferation and osteogenic differentiation.


2019 ◽  
Vol 9 (11) ◽  
pp. 1583-1588
Author(s):  
Shaoting Li ◽  
Jinhe Zhou ◽  
Zhiqing Ye ◽  
Shenglin Wu

Bone marrow mesenchymal stem cells (BMSCs) can be multi-directionally differentiated and are widely used in tissue engineering. 25-hydroxycholesterol (25-HC) can induce osteogenesis and is involved in osteogenic formation. However, the role of 25-hydroxycholesterol in BMSCs is unclear. Rat BMSCs were isolated and divided into control group and 25-HC treatment (2 and 4 μM) group. Cell proliferation was detected by MTT assay. Caspase-3 and ALP activity was analyzed. Real time PCR was done to analyze Runx2, OPN, FABP4 and PPARγ2 expression. Red staining detects the calcified nodule formation. Wnt5 level was detected by western blot and TGF-β secretion was analyzed by ELISA. 25-HC treatment significantly inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and the expression of Runx2 and OPN, increased expression of FABP4 and PPARγ2, decreased formation of calcified nodules, secretion of TGF-β and reduced expression of Wnt5 compared to control group (P < 0.05), and the above changes were significant with the increase of the concentration of 25-HC (P < 0.05). 25-hydroxycholesterol regulates the proliferation and apoptosis of BMSCs by regulating Wnt5/TGF-β signaling pathway, inhibiting the differentiation of BMSCs into osteogenic direction and promoting its adipogenic differentiation.


2019 ◽  
Vol 9 (9) ◽  
pp. 1266-1272
Author(s):  
Yonggang Zhang ◽  
Junqi Wang ◽  
Junqi Yang ◽  
Peng Liu ◽  
Kunzheng Wang ◽  
...  

Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteogenesis. Integrin-linked kinase (ILK) regulates several biological processes. However, whether ILK affects metabolic syndrome (MS)-derived BMSCs differentiation remains unclear. SD rats were divided into control group and MS group. Diabetic rat model was prepared. BMSCs were divided into control group, MS group and ILK group, in which ILK plasmid was transfected into BMSCs from MS group followed by analysis of ILK, Bcl-2, Bax, RUNX2 and OPN expression by real time PCR, BMSCs proliferation by MTT assay, BMSCs apoptosis, expression of Beclin-3 and LC-3 by Western blot as well as secretion of IL-1β and IL-6 by ELISA. MS group showed significantly reduced BMSCs proliferation, elevated Caspase 3 activity, downregulated Bcl-2, RUNX2 and OPN expression, upregulated Bax level and increased IL-1β and IL-6 secretion as well as decreased Beclin-3 and LC-3 expression compared to control group (P < 0.05). BMSCs with ILK overexpression in high glucose presented significantly promoted BMSCs proliferation, decreased Caspase 3 activity, increased Bcl-2, RUNX2 and OPN expression, decreased Bax expression and IL-1β and IL-6 secretion as well as reduced Beclin-3 and LC-3 expression compared to MS group (P < 0.05). ILK expression in MS-derived BMSCs is decreased. ILK overexpression in BMSCs can promote autophagy, inhibit apoptosis and inflammation, and promote their differentiation into osteoblasts.


2021 ◽  
Vol 11 (4) ◽  
pp. 749-755
Author(s):  
Chi Zhang ◽  
Yuanhe Wang ◽  
Kang Sun ◽  
Dingzhu Yu ◽  
Shaoqi Tian

Human bone marrow mesenchymal stem cells (BMSCs) differentiation into special cell types is affected by inflammation. Melatonin has various effects such as anti-oxidation and immune regulation. However, melatonin’s effect on BMSCs osteogenic differentiation during inflammation has not been elucidated. Rat BMSCs were isolated and assigned into control group, inflammation group (1 μg/ml lipopolysaccharide, LPS) and melatonin group (100 μM melatonin was added to LPSstimulated BMSCs cells) followed by analysis of BMSCs proliferation by MTT assay, Caspase 3 and ALP activity, expression of Runx2 and OP by Real time PCR, ROS content and SOD activity, TNF-α and IL-1β secretion by ELISA and mTOR/PI3K/AKT signaling protein level by Western blot. LPS action on BMSCs significantly inhibits BMSCs proliferation, promotes Caspase 3 activity, inhibits ALP activity, decreases Runx2 and OP expression and SOD activity, increases ROS content and TNF-α and IL-1β secretion as well as reduced mTOR and p-PI3K level (P <0.05). Melatonin addition significantly reversed the above changes (P <0.05). Melatonin can regulate oxidative stress, inhibit inflammation, and promote BMSCs proliferation and osteogenic differentiation in inflammatory environment by activating mTOR/PI3K/AKT signaling pathway.


2019 ◽  
Vol 9 (11) ◽  
pp. 1589-1594
Author(s):  
Xu Tong ◽  
Renjian Zheng ◽  
Linjing Shu

Bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation plays an important role in Osteoporosis (OP). LncRNA DGCR5 participates in OP development. However, LncRNA DGCR5's effect on BMSCs in osteoporosis rats and related mechanisms have not been elucidated. SD rats were divided into control group and OP group. Rat BMSCs were cultured and transfected with LncRNA DGCR5 siRNA followed by analysis of LncRNA DGCR5 expression by Real time PCR, cell proliferation by MTT assay, Caspase 3 activity, of ERK/P38 signaling pathway protein expression by Western blot, ALP activity, and the osteogenic genes Runx2 and OC expression by Real time PCR. LncRNA DGCR51 expression was increased in BMSCs of OP rats. Compared with control group, cell proliferation was significantly inhibited, Caspase 3 activity was increased, p-ERK1/2 and p-P38 were downregulated, ALP activity, Runx2 and OC expression was decreased (P < 0.05). DGCR51 siRNA transfection into OP rat BMSCs significantly reduced DGCR51 expression, promoted cell proliferation, decreased Caspase 3 activity, increased p-ERK1/2 and p-P38 expression, increased ALP activity, Runx2 and OC expression compared to OP group (P < 0.05). LncRNA DGCR51 expression is increased in OP rat BMSCs. Down-regulation of LncRNA DGCR51 promoted the activation of ERK/P38 signaling pathway, thereby inhibiting the apoptosis of BMSCs and promoting proliferation and osteogenic differentiation of BMSC in OP rats.


2019 ◽  
Vol 9 (9) ◽  
pp. 1304-1310
Author(s):  
Qing Yang ◽  
Lei Wu ◽  
Yang Liu ◽  
Bing Yuan

Chordin-like 1 (CHRDL1) functions in multiple tissues and organs. However, whether CHRDL1 affects bone marrow mesenchymal stem cells (BMSCs) differentiation remain unclear. Rat BMSCs were isolated and divided into control group, CHRDL1 group and CHRDL1 siRNA group followed by analysis of CHRDL1 level by real time PCR and ELISA, cell proliferation by MTT assay, Caspase 3 activity, ALP activity, expression of o Runx2, OC and PPARγ2 by Real time PCR, TGF-β secretion by ELIS, and Wnt5 protein expression by Western blot. CHRDL1 expression was significantly increased in CHRDL1 group, along with significantly promoted cell proliferation, decreased Caspase 3 activity, increased ALP activity and expression of Runx2 and OC, decreased PPARγ2 expression, increased TGF-β secretion and Wnt5 expression compared to control group (P < 0.05). However, CHRDL1 siRNA transfection significantly decreased CHRDL1 expression, inhibited cell proliferation, increased Caspase 3 activity, decreased ALP activity and Runx2 and OC expression, increased PPARγ2 expression, decreased TGF-β secretion and Wnt5 expression. (P < 0.05). Down-regulation of CHRDL1 expression in BMSCs promotes Wnt5/TGF-β signaling transduction, which in turn increases BMSCs proliferation and osteogenic differentiation. Up-regulation of CHRDL1 expression in BMSCs inhibited the activation of Wnt5/TGF-β signaling pathway, promoted BMSCs apoptosis, and inhibited BMSCs proliferation and osteogenic differentiation.


2019 ◽  
Vol 9 (12) ◽  
pp. 1776-1782
Author(s):  
Yongyi Xu ◽  
Lei Chen

The distal low homeobox 3 (DLX3) regulates the bone marrow mesenchymal stem cells (BMSC) osteogenic differentiation. However, whether DLX3 affects osteoporosis (OP) remains unclear. An OVX-induced OP rat model was constructed and DLX3 plasmid was injected followed by analysis of bone mineral density and ALP activity. Rat BMSCs were isolated and divided into control group, OP group and DLX3 group (transfected with DLX3 plasmid) followed by analysis of chondrocytes survival rate by MTT assay, Caspase 3 activity, type I collagen and Osterix expression by Real time PCR and -catenin level by Western blot. DLX3 expression was significantly down-regulated in OP rats with deceased bone density and ALP activity compared to sham group (P < 0 05). When DLX3 was transfected into OP rats, DLX3 expression was significantly up-regulated with increased bone density and ALP activity compared with OP group (P < 0 05). BMSCs survival was significantly decreased in OP group and Caspase 3 activity was significantly increased with downregulated type I collagen, Osterix and -catenin (P < 0 05). However, transfection of DLX3 plasmid into OP group BMSCs cells can significantly reverse the above changes, compared to OP group (P < 0 05). DLX3 expression is reduced in osteoporosis. Up-regulation of DLX3 can promote osteogenic differentiation of BMSCs by regulating typical Wnt signaling, promote differentiation into osteoblasts, increase bone density increase, and then ameliorate osteoporosis.


2013 ◽  
Vol 238 (9) ◽  
pp. 991-998 ◽  
Author(s):  
Ping Hua ◽  
Li-bao Liu ◽  
Jia-liang Liu ◽  
Meng Wang ◽  
Hui-qi Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document