scholarly journals Predicting the polyethylene wear rate in pin-on-disc experiments in the context of prosthetic hip implants: Deriving a data-driven model using machine learning methods

2019 ◽  
Vol 133 ◽  
pp. 101-110 ◽  
Author(s):  
A. Borjali ◽  
K. Monson ◽  
B. Raeymaekers
2019 ◽  
Author(s):  
E. A. Kalentiev ◽  
V. V. Tarasov ◽  
S. Yu. Lokhanina

2021 ◽  
Vol 14 (11) ◽  
Author(s):  
Tanveer Ahmed Siddiqi ◽  
Saima Ashraf ◽  
Sadiq Ali Khan ◽  
Muhammad Jawed Iqbal

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
David F. Nettleton ◽  
Dimitrios Katsantonis ◽  
Argyris Kalaitzidis ◽  
Natasa Sarafijanovic-Djukic ◽  
Pau Puigdollers ◽  
...  

Abstract Background In this study, we compared four models for predicting rice blast disease, two operational process-based models (Yoshino and Water Accounting Rice Model (WARM)) and two approaches based on machine learning algorithms (M5Rules and Recurrent Neural Networks (RNN)), the former inducing a rule-based model and the latter building a neural network. In situ telemetry is important to obtain quality in-field data for predictive models and this was a key aspect of the RICE-GUARD project on which this study is based. According to the authors, this is the first time process-based and machine learning modelling approaches for supporting plant disease management are compared. Results Results clearly showed that the models succeeded in providing a warning of rice blast onset and presence, thus representing suitable solutions for preventive remedial actions targeting the mitigation of yield losses and the reduction of fungicide use. All methods gave significant “signals” during the “early warning” period, with a similar level of performance. M5Rules and WARM gave the maximum average normalized scores of 0.80 and 0.77, respectively, whereas Yoshino gave the best score for one site (Kalochori 2015). The best average values of r and r2 and %MAE (Mean Absolute Error) for the machine learning models were 0.70, 0.50 and 0.75, respectively and for the process-based models the corresponding values were 0.59, 0.40 and 0.82. Thus it has been found that the ML models are competitive with the process-based models. This result has relevant implications for the operational use of the models, since most of the available studies are limited to the analysis of the relationship between the model outputs and the incidence of rice blast. Results also showed that machine learning methods approximated the performances of two process-based models used for years in operational contexts. Conclusions Process-based and data-driven models can be used to provide early warnings to anticipate rice blast and detect its presence, thus supporting fungicide applications. Data-driven models derived from machine learning methods are a viable alternative to process-based approaches and – in cases when training datasets are available – offer a potentially greater adaptability to new contexts.


2021 ◽  
Author(s):  
Anton Gryzlov ◽  
Liliya Mironova ◽  
Sergey Safonov ◽  
Muhammad Arsalan

Abstract Multiphase flow metering is an important tool for production monitoring and optimization. Although there are many technologies available on the market, the existing multiphase meters are only accurate to a certain extend and generally are expensive to purchase and maintain. Virtual flow metering (VFM) is a low-cost alternative to conventional production monitoring tools, which relies on mathematical modelling rather than the use of hardware instrumentation. Supported by the availability of the data from different sensors and production history, the development of different virtual flow metering systems has become a focal point for many companies. This paper discusses the importance of flow modelling for virtual flow metering. In addition, main data-driven algorithms are introduced for the analysis of several dynamic production data sets. Artificial Neural Networks (ANN) together with advanced machine learning methods such as GRU and XGBoost have been considered as possible candidates for virtual flow metering. The obtained results indicate that the machine learning algorithms estimate oil, gas and water rates with acceptable accuracy. The feasibility of the data-driven virtual metering approach for continuous production monitoring purposes has been demonstrated via a series of simulation-based cases. Amongst the used algorithms the deep learning methods provided the most accurate results combined with reasonable time for model training.


Sign in / Sign up

Export Citation Format

Share Document