Characteristic curves of hydrogenated amorphous silicon based solar cells modeled with the defect pool model

2007 ◽  
Vol 515 (11) ◽  
pp. 4826-4833 ◽  
Author(s):  
E. Klimovsky ◽  
A. Sturiale ◽  
F.A. Rubinelli
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2011 ◽  
Vol 11 (1) ◽  
pp. S50-S53 ◽  
Author(s):  
Chao-Chun Wang ◽  
Chueh-Yang Liu ◽  
Shui-Yang Lien ◽  
Ko-Wei Weng ◽  
Jung-Jie Huang ◽  
...  

2009 ◽  
Vol 1153 ◽  
Author(s):  
Anatoli Shkrebtii ◽  
Yuriy Kryuchenko ◽  
Anaroliy Sachenko ◽  
Igor Sokolovskyi ◽  
Franco Gaspari

AbstractThin film hydrogenated amorphous silicon (a-Si:H) is widely used in photovoltaics. In order to get the best possible performance of the a-Si:H solar cells it is important to optimize the amorphous film and solar cells in terms their parameters such as mobility gap, p-, i- and n-layer doping levels, electron and hole lifetime and their mobilities, resistance of p-, i- and n-layers, contact grid geometry and parameters of the transparent conducting and antireflecting layers, and others. To maximize thin a-Si:H film based solar cell performance we have developed a general numerical formalism of photoconversion, which takes into account all the above parameters for the optimization. Application of the formalism is demonstrated for typical a-Si:H based solar cells before Staebler-Wronski (SW) light soaking effect. This general formalism is not limited to a-Si:H based systems only, and it can be applied to other types of solar cells as well.


1998 ◽  
Vol 507 ◽  
Author(s):  
Lin Jiang ◽  
Eric A. Schiff ◽  
Qi Wang ◽  
S. Guha ◽  
J. Yang

ABSTRACTGrazing-incidence measurements of polarized electroabsorption (EA) in p-i-n solar cells based on hydrogenated amorphous silicon (a-Si:H) are presented. We confirm polarized electroabsorption effect of a-Si:H with the present “sandwich” electrodes, in fact, we find a significantly stronger polarization dependence compared with earlier work based on electroabsorption detected using coplanar electrodes on a-Si:H thin films. We did not reproduce the significant dependence of the polarized electroabsorption upon light soaking, which was found in previous work with coplanar electrodes. We speculate the difference between two electrode geometries is due to the space charge and two dimensional fields.


Sign in / Sign up

Export Citation Format

Share Document