Electro-mechanical coupling band gaps of a piezoelectric phononic crystal Timoshenko nanobeam with surface effects

Ultrasonics ◽  
2021 ◽  
Vol 109 ◽  
pp. 106225
Author(s):  
Denghui Qian ◽  
Jinghong Wu ◽  
Feiyang He
2019 ◽  
Vol 33 (30) ◽  
pp. 1950369
Author(s):  
Denghui Qian ◽  
Siyuan Bao ◽  
Feng Shen

Applying surface piezoelectricity theory and plane wave expansion (PWE) method to the model of Kirchhoff plate, the calculation method of band structure of a piezoelectric phononic crystal (PC) nanoplate with surface effects is proposed and formalized. In order to investigate the bandgap properties of first order in the nanoplate in detail, the corresponding influence rules of thermo-electro-mechanical coupling fields, surface effects and geometric parameters on bandgaps are studied. During the researches, temperature variation, electrical voltage and external axial force are picked as the influencing parameters corresponding to thermo-electro-mechanical coupling fields. Residual surface stress and material intrinsic length are chosen as the influencing parameter related to surface effects. Lattice constant, radius of PZT-4 hole and thickness of nanoplate are picked as the influencing parameters of geometric parameters. All the results are expected to be helpful for the design of micro and nanodevices based on piezoelectric periodic nanoplates.


2021 ◽  
Author(s):  
Denghui Qian ◽  
Jianchun Wang ◽  
Feiyang He

Abstract The model of a locally resonant (LR) epoxy/PZT-4 phononic crystal (PC) nanobeam with “spring-mass” resonators periodically attached on epoxy is proposed. The corresponding band structures are calculated by coupling Euler beam theory, nonlocal piezoelectricity theory and plane wave expansion (PWE) method. Three complete band gaps with widest total width less than 10GHz can be formed in the proposed nanobeam by comprehensively comparing the band structures of three kinds of LR PC nanobeams with resonators attached or not. Furthermore, influencing rules of the coupling fields between electricity and mechanics, “spring-mass” resonator, nonlocal effect and different geometric parameters on first three band gaps are discussed and summarized. All the investigations are expected to be applied to realize the active control of vibration in the region of ultrahigh frequency.


2021 ◽  
Author(s):  
Denghui Qian ◽  
Jian Zhang ◽  
Jianchun Wang

Abstract The paper proposed a model of a locally resonant (LR) piezoelectric/elastic phononic crystal (PC) nanobeam with periodically attached “spring-mass” resonator and additional spring between upper and lower nanobeams, as well as horizontal spring between mass and foundation. Euler beam theory and nonlocal piezoelectricity theory are coupled and introduced to plane wave expansion (PWE) method to calculate the band structures of such a model with different parameters. Numerical results and further analysis demonstrate that all the bands of double-layer nanobeam can be divided into symmetric and antisymmetric ones. Adding additional and horizontal springs play a role in control the symmetric and antisymmetric bands respectively, which make wider band gaps be opened than corresponding single-layer nanobeam. Moreover, the change of parameters of electro-mechanical coupling fields and resonator can be applied to effectively control the starting frequencies and widths of band gaps, which can provide a theoretical basis for active control of vibration. Effects of geometric and non-dimensional nonlocal parameters on band gaps are also discussed. All the studies are expected to be applied to actively control vibration propagation in the field of nano electro-mechanical system (NEMS).


Author(s):  
Edson Jansen Pedrosa de Miranda Junior ◽  
Jose Maria Campos dos Santos

2012 ◽  
Vol 376 (4) ◽  
pp. 579-583 ◽  
Author(s):  
Yuanwei Yao ◽  
Fugen Wu ◽  
Xin Zhang ◽  
Zhilin Hou

2018 ◽  
Vol 67 (7) ◽  
pp. 074301
Author(s):  
Zhang Zhen-Fang ◽  
Yu Dian-Long ◽  
Liu Jiang-Wei ◽  
Wen Ji-Hong
Keyword(s):  

2011 ◽  
Vol 01 (03) ◽  
pp. 86-90
Author(s):  
Xiaoyi Huang ◽  
Jingcui Peng ◽  
Huanyou Wang ◽  
Gui Jin

Sign in / Sign up

Export Citation Format

Share Document