Plant viral suppressors of RNA silencing

2004 ◽  
Vol 102 (1) ◽  
pp. 97-108 ◽  
Author(s):  
B Roth
2013 ◽  
Vol 14 (6) ◽  
pp. 567-575 ◽  
Author(s):  
Éva Várallyay ◽  
Zoltán Havelda

2020 ◽  
Vol 33 (3) ◽  
pp. 412-422
Author(s):  
Chao Zhang ◽  
Dong Chen ◽  
Guoyi Yang ◽  
Xiyuan Yu ◽  
Jianguo Wu

Viral suppressors of RNA silencing (VSRs) are a cluster of viral proteins that have evolved to counteract eukaryotic antiviral RNA silencing pathways, thereby contributing to viral pathogenicity. In this study, we revealed that the matrix protein P4 encoded by rice stripe mosaic virus (RSMV), which is an emerging cytoplasmic rhabdovirus, is a weak RNA silencing suppressor. By conducting yeast two-hybrid, bimolecular fluorescence complementation, and subcellular colocalization assays, we proved that P4 interacts with the rice endogenous suppressor of gene silencing 3 (OsSGS3). We also determined that P4 overexpression has no effect on OsSGS3 transcription. However, P4 can promote the degradation of OsSGS3 via ubiquitination and autophagy. Additionally, a potato virus X–based expression system was used to confirm that P4 enhances the development of mosaic symptoms on Nicotiana benthamiana leaves by promoting hydrogen peroxide accumulation but not cell death. To verify whether P4 is a pathogenicity factor in host plants, we generated transgenic P4-overexpressing rice plants that exhibited disease-related developmental defects including decreased plant height and excessive tillering. Our data suggest that RSMV-encoded P4 serves as a weak VSR that inhibits antiviral RNA silencing by targeting OsSGS3.


2017 ◽  
Vol 30 (4) ◽  
pp. 295-300 ◽  
Author(s):  
E. Walsh ◽  
J. M. Elmore ◽  
C. G. Taylor

Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual “giant cells”) is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host’s RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.


2011 ◽  
Vol 9 (68) ◽  
pp. 436-447 ◽  
Author(s):  
Marian A. C. Groenenboom ◽  
Paulien Hogeweg

Virus infection in plants is limited by RNA silencing. In turn, viruses can counter RNA silencing with silencing suppressors. Viral suppressors of RNA silencing have been shown to play a role in symptom development in plants. We here study four different strategies employed by silencing suppressors: small interfering RNA (siRNA) binding, double-strand RNA (dsRNA) binding and degrading or inactivating Argonaute. We study the effect of the suppressors on viral accumulation within the cell as well as its spread on a tissue with mathematical and computational models. We find that suppressors which target Argonaute are very effective in a single cell, but that targeting dsRNA or siRNA is much more effective at the tissue level. Although targeting Argonaute can be beneficial for viral spread, it can also cause hindrance in some cases owing to raised levels of siRNAs that can spread to other cells.


PLoS ONE ◽  
2009 ◽  
Vol 4 (6) ◽  
pp. e5866 ◽  
Author(s):  
Bassam Berry ◽  
Safia Deddouche ◽  
Doris Kirschner ◽  
Jean-Luc Imler ◽  
Christophe Antoniewski

2009 ◽  
Vol 90 (2) ◽  
pp. 519-525 ◽  
Author(s):  
Sandra Martínez-Turiño ◽  
Carmen Hernández

Viral-derived double-stranded RNAs (dsRNAs) activate RNA silencing, generating small interfering RNAs (siRNAs) which are incorporated into an RNA-induced silencing complex (RISC) that promotes homology-dependent degradation of cognate RNAs. To counteract this, plant viruses express RNA silencing suppressors. Here, we show that the coat protein (CP) of Pelargonium flower break virus (PFBV), a member of the genus Carmovirus, is able to efficiently inhibit RNA silencing. Interestingly, PFBV CP blocked both sense RNA- and dsRNA-triggered RNA silencing and did not preclude generation of siRNAs, which is in contrast with the abilities that have been reported for other carmoviral CPs. We have also found that PFBV CP can bind siRNAs and that this ability correlates with silencing suppression activity and enhancement of potato virus X pathogenicity. Collectively, the results indicate that PFBV CP inhibits RNA silencing by sequestering siRNAs and preventing their incorporation into a RISC, thus behaving similarly to unrelated viral suppressors but dissimilarly to orthologous ones.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Muhammad Dilshad Hussain ◽  
Tahir Farooq ◽  
Xi Chen ◽  
Muhammad Tariqjaveed ◽  
Tong Jiang ◽  
...  

AbstractRNA silencing is an evolutionarily homology-based gene inactivation mechanism and plays critical roles in plant immune responses to acute or chronic virus infections, which often pose serious threats to agricultural productions. Plant antiviral immunity is triggered by virus-derived small interfering RNAs (vsiRNAs) and functions to suppress virus further replication via a sequence-specific degradation manner. Through plant-virus arms races, many viruses have evolved specific protein(s), known as viral suppressors of RNA silencing (VSRs), to combat plant antiviral responses. Numerous reports have shown that VSRs can efficiently curb plant antiviral defense response via interaction with specific component(s) involved in the plant RNA silencing machinery. Members in the family Closteroviridae (closterovirids) are also known to encode VSRs to ensure their infections in plants. In this review, we will focus on the plant antiviral RNA silencing strategies, and the most recent developments on the multifunctional VSRs encoded by closterovirids. Additionally, we will highlight the molecular characters of phylogenetically-associated closterovirids, the interactions of these viruses with their host plants and transmission vectors, and epidemiology.


2010 ◽  
Vol 6 (1) ◽  
pp. e1000729 ◽  
Author(s):  
Matthew W. Endres ◽  
Brian D. Gregory ◽  
Zhihuan Gao ◽  
Amy Wahba Foreman ◽  
Sizolwenkosi Mlotshwa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document