Erratum to ‘Differential roles of cardiac and leukocyte derived macrophage migration inhibitory factor in inflammatory responses and cardiac remodelling post myocardial infarction’ [J Mol Cell Cardiol 69 (2014) 32–42]

2014 ◽  
Vol 75 ◽  
pp. 198
Author(s):  
David A. White ◽  
Yidan Su ◽  
Peter Kanellakis ◽  
Helen Kiriazis ◽  
Eric F. Morand ◽  
...  
2006 ◽  
Vol 75 (1) ◽  
pp. 201-210 ◽  
Author(s):  
Gordon A. Awandare ◽  
Yamo Ouma ◽  
Collins Ouma ◽  
Tom Were ◽  
Richard Otieno ◽  
...  

ABSTRACT Severe malarial anemia (SMA), caused by Plasmodium falciparum infections, is one of the leading causes of childhood mortality in sub-Saharan Africa. Although the molecular determinants of SMA are largely undefined, dysregulation in host-derived inflammatory mediators influences disease severity. Macrophage migration inhibitory factor (MIF) is an important regulator of innate inflammatory responses that has recently been shown to suppress erythropoiesis and promote pathogenesis of SMA in murine models. To examine the role of MIF in the development of childhood SMA, peripheral blood MIF production was examined in Kenyan children (aged <3 years, n = 357) with P. falciparum malarial anemia. All children in the study were free from bacteremia and human immunodeficiency virus type 1. Since deposition of malarial pigment (hemozoin [Hz]) contributes to suppression of erythropoiesis, the relationship between MIF concentrations and monocytic acquisition of Hz was also examined in vivo and in vitro. Circulating MIF concentrations declined with increasing severity of anemia and significantly correlated with peripheral blood leukocyte MIF transcripts. However, MIF concentrations in peripheral blood were not significantly associated with reticulocyte production. Multivariate regression analyses, controlling for age, gender, and parasitemia, further revealed that elevated levels of pigment-containing monocytes (PCM) was associated with SMA and decreased MIF production. In addition, PCM levels were a better predictor of hemoglobin and MIF concentrations than parasite density. Additional experiments in malaria-naive individuals demonstrated that hemozoin caused both increased and decreased MIF production in cultured peripheral blood mononuclear cells (PBMC) in a donor-specific manner, independent of apoptosis. However, PBMC MIF production in children with acute malaria progressively declined with increasing anemia severity. Results presented here demonstrate that acquisition of hemozoin by monocytes is associated with suppression of peripheral blood MIF production and enhanced severity of anemia in childhood malaria.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Haiyi Yu ◽  
Xinyu Wang ◽  
Xiangning Deng ◽  
Youyi Zhang ◽  
Wei Gao

Macrophage migration inhibitory factor (MIF), a widely expressed pleiotropic cytokine, is reportedly involved in several cardiovascular diseases, in addition to inflammatory diseases. Plasma MIF levels are elevated in the early phase of acute cardiac infarction. This study is aimed at investigating the correlation between plasma MIF levels and cardiac function and prognosis in patients with acute ST-segment elevation myocardial infarction (STEMI) with or without diabetes mellitus. Overall, 204 patients with STEMI who underwent emergency percutaneous coronary intervention were enrolled: 57 and 147 patients in the diabetes and nondiabetes STEMI groups, respectively. Sixty-five healthy people were selected as controls. Plasma MIF levels were measured at the time of diagnosis. Basic clinical data and echocardiographic findings within 72 h of admission were collected. Patients were followed up, and echocardiograms were reviewed at the 12-month follow-up. Plasma MIF levels were significantly higher in the diabetes and nondiabetes STEMI groups than in the control group and in patients with Killip grade≥II STEMI than in those with Killip grade I. Plasma MIF levels were negatively correlated with the left ventricular ejection fraction (LVEF) of myocardial infarction in patients with or without diabetes in the acute phase of infarction, whereas the left ventricular diastolic dysfunction (LVDD) was positively correlated. MIF levels in the nondiabetes STEMI group were positively correlated with N-terminal pro-b-type natriuretic peptide levels and were associated with LVEF and LVDD at the 12-month follow-up. The risk of adverse cardiovascular and cerebrovascular events was significantly higher in the MIF high-level group (≥52.7 ng/mL) than in the nondiabetes STEMI group 36 months after presentation. Thus, MIF levels in STEMI patients with or without diabetes can reflect acute cardiac function. In STEMI patients without diabetes, MIF levels can also indicate cardiac function and long-term prognosis at the 12-month follow-up.


Sign in / Sign up

Export Citation Format

Share Document