scholarly journals A junctional cAMP compartment regulates rapid Ca2+ signaling in atrial myocytes

Author(s):  
Sören Brandenburg ◽  
Jan Pawlowitz ◽  
Vanessa Steckmeister ◽  
Hariharan Subramanian ◽  
Dennis Uhlenkamp ◽  
...  
Keyword(s):  
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
V Jimenez-Sabado ◽  
S Casabella ◽  
P Izquierdo ◽  
C Tarifa ◽  
A Llach ◽  
...  

Abstract Background Atrial fibrillation has been associated with an increase in ryanodine receptor (RyR2) phosphorylation and local calcium release (calcium sparks). Carvedilol, a nonselective beta-adrenergic receptor blocker also inhibits the cardiac ryanodine receptor (RyR2), but it has been suggested that the enantiomer R-carvedilol only inhibits RyR2 activity and hence has the potential to inhibit calcium sparks without affecting RyR2 phosphorylation. Purpose This study aimed to determine the ability of the enantiomers R- and S-carvedilol to reverse RyR2 phosphorylation at s2808 and calcium sparks induced by the β2-adrenergic agonist fenoterol, in order to determine the relationship between RyR2 phosphorylation at s2808 and calcium spark frequency, and to assess the efficacy of R- and S-carvedilol. Methods Human right atrial myocytes were isolated and subjected to immunofluorescent labelling of total and s2808 phosphorylated RyR2, or loaded with fluo-4 and subjected to confocal calcium imaging. Beta-adrenergic receptors were first activated with 3μM fenoterol and then inhibited by different concentrations of carvedilol R- or S-enantiomers. Results Incubation of myocytes with fenoterol increased the s2808/RyR2 ratio from 0.32±0.03 to 0.66±0.05 (n=18, p<0.001). Incubation with 0.1, 0.3, 1 or 3μM R-carvedilol in the presence of fenoterol changed the s2808/RyR2 ratio to 0.64±0.05, 0.44±0.04, 0.34±0.07 and 0.28±0.05 (p<0.01) respectively. For comparison 3μM S-carvedilol reduced the s2808/RyR2 ratio to 0.23±0.06 in myocytes from 5 patients (p<0.01). Confocal calcium imaging revealed that fenoterol increased the spark density from 0.28±0.04 to 1.24±0.25 events/s/1000μm2 (n=9, p<0.01) and addition of 0.1, 0.3, or 1μM R-carvedilol changed the frequency to 1.32±0.52, 0.38±0.05, and 0.15±0.05 events/s/1000μm2 (p<0.01) respectively. Analysis of atrial myocytes from patients without atrial fibrillation revealed that the s2808/RyR2 ratio was similar in 25 patients treated with beta-blockers (0.39±0.04) and 57 that did not receive beta-blockers (0.44±0.03, p=0.33) while the s2808/RyR2 ratio was significantly smaller in 16 patients with atrial fibrillation receiving beta-blockers (0.43±0.08) than in 5 patients that did not (0.80±0.19, p<0.05). Conclusions R-carvedilol reverses the effects of beta-adrenergic stimulation on s2808 phosphorylation and calcium sparks in human atrial myocytes, and treatment with beta-blockers reduces excessive RyR2 phosphorylation at s2808 in patients with atrial fibrillation to levels observed in those without the arrhythmia, pointing to beta-adrenergic receptors as a target for controlling RyR2 phophorylation and activity in atrial fibrillation. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Spanish Ministry of Science and Innovation & Spanish Ministry of Health and Consume


2009 ◽  
Vol 96 (3) ◽  
pp. 257a
Author(s):  
Sun-Hee Woo ◽  
Min-Jeong Son

2000 ◽  
Vol 86 (6) ◽  
pp. 643-648 ◽  
Author(s):  
Marie-Cécile Wellner-Kienitz ◽  
Kirsten Bender ◽  
Thomas Meyer ◽  
Moritz Bünemann ◽  
Lutz Pott

2013 ◽  
Vol 304 (7) ◽  
pp. H983-H993 ◽  
Author(s):  
Aleksey V. Zima ◽  
Malikarjuna R. Pabbidi ◽  
Stephen L. Lipsius ◽  
Lothar A. Blatter

Mitochondria play an important role in intracellular Ca2+ concentration ([Ca2+]i) regulation in the heart. We studied sarcoplasmic reticulum (SR) Ca2+ release in cat atrial myocytes during depolarization of mitochondrial membrane potential (ΔΨm) induced by the protonophore FCCP. FCCP caused an initial decrease of action potential-induced Ca2+ transient amplitude and frequency of spontaneous Ca2+ waves followed by partial recovery despite partially depleted SR Ca2+ stores. In the presence of oligomycin, FCCP only exerted a stimulatory effect on Ca2+ transients and Ca2+ wave frequency, suggesting that the inhibitory effect of FCCP was mediated by ATP consumption through reverse-mode operation of mitochondrial F1F0-ATPase. ΔΨm depolarization was accompanied by cytosolic acidification, increases of diastolic [Ca2+]i, intracellular Na+ concentration ([Na+]i), and intracellular Mg2+ concentration ([Mg2+]i), and a decrease of intracellular ATP concentration ([ATP]i); however, glycolytic ATP production partially compensated for the exhaustion of mitochondrial ATP supplies. In conclusion, the initial inhibition of Ca2+ transients and waves resulted from suppression of ryanodine receptor SR Ca2+ release channel activity by a decrease in [ATP], an increase of [Mg2+]i, and cytoplasmic acidification. The later stimulation resulted from reduced mitochondrial Ca2+ buffering and cytosolic Na+ and Ca2+ accumulation, leading to enhanced Ca2+-induced Ca2+ release and spontaneous Ca2+ release in the form of Ca2+ waves. ΔΨm depolarization and the ensuing consequences of mitochondrial uncoupling observed here (intracellular acidification, decrease of [ATP]i, increase of [Na+]i and [Mg2+]i, and Ca2+ overload) are hallmarks of ischemia. These findings may therefore provide insight into the consequences of mitochondrial uncoupling for ion homeostasis, SR Ca2+ release, and excitation-contraction coupling in ischemia at the cellular and subcellular level.


2014 ◽  
Vol 10 (5) ◽  
pp. 2627-2632 ◽  
Author(s):  
YONGJIANG MA ◽  
MIAO TIAN ◽  
PIN LIU ◽  
ZILING WANG ◽  
YUAN GUAN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document