Estradiol stimulates the biosynthetic pathways of breast cancer cells: Detection by metabolic flux analysis

2006 ◽  
Vol 8 (6) ◽  
pp. 639-652 ◽  
Author(s):  
Neil S. Forbes ◽  
Adam L. Meadows ◽  
Douglas S. Clark ◽  
Harvey W. Blanch
2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Sheree D. Martin ◽  
Sean L. McGee

Abstract Background Increased flux through both glycolytic and oxidative metabolic pathways is a hallmark of breast cancer cells and is critical for their growth and survival. As such, targeting this metabolic reprograming has received much attention as a potential treatment approach. However, the heterogeneity of breast cancer cell metabolism, even within classifications, suggests a necessity for an individualised approach to treatment in breast cancer patients. Methods The metabolic phenotypes of a diverse panel of human breast cancer cell lines representing the major breast cancer classifications were assessed using real-time metabolic flux analysis. Flux linked to ATP production, pathway reserve capacities and specific macromolecule oxidation rates were quantified. Suspected metabolic vulnerabilities were targeted with specific pathway inhibitors, and relative cell viability was assessed using the crystal violet assay. Measures of AMPK and mTORC1 activity were analysed through immunoblotting. Results Breast cancer cells displayed heterogeneous energy requirements and utilisation of non-oxidative and oxidative energy-producing pathways. Quantification of basal glycolytic and oxidative reserve capacities identified cell lines that were highly dependent on individual pathways, while assessment of substrate oxidation relative to total oxidative capacity revealed cell lines that were highly dependent on individual macromolecules. Based on these findings, mild mitochondrial inhibition in ESH-172 cells, including with the anti-diabetic drug metformin, and mild glycolytic inhibition in Hs578T cells reduced relative viability, which did not occur in non-transformed MCF10a cells. The effects on viability were associated with AMPK activation and inhibition of mTORC1 signalling. Hs578T were also found to be highly dependent on glutamine oxidation and inhibition of this process also impacted viability. Conclusions Together, these data highlight that systematic flux analysis in breast cancer cells can identify targetable metabolic vulnerabilities, despite heterogeneity in metabolic profiles between individual cancer cell lines.


2014 ◽  
Vol 465 (1) ◽  
pp. 49-61 ◽  
Author(s):  
Brandie N. Radde ◽  
Margarita M. Ivanova ◽  
Huy Xuan Mai ◽  
Joshua K. Salabei ◽  
Bradford G. Hill ◽  
...  

Oestrogen receptor α-expressing breast cancer cells show differences in basal bioenergetics profiles and bioenergetics responses to serum depletion, oestradiol and tamoxifen as measured in real time by extracellular flux analysis in intact cells.


Author(s):  
Jue Hou ◽  
Heather J. Wright ◽  
Nichole Chan ◽  
Richard Tran ◽  
Olga V. Razorenova ◽  
...  

2010 ◽  
Vol 34 (8) ◽  
pp. S49-S49
Author(s):  
Lei Wang ◽  
Xun Zhou ◽  
Lihong Zhou ◽  
Yong Chen ◽  
Xun Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document