Improved sliding mode dynamic matrix control strategy: Application on spindle loading and precision measuring device based on piezoelectric actuator

2022 ◽  
Vol 167 ◽  
pp. 108543
Author(s):  
Zu'an Ding ◽  
Zhaojun Yang ◽  
Chuanhai Chen ◽  
Weizheng Chen ◽  
Hu Chen ◽  
...  
2020 ◽  
Vol 117 (3) ◽  
pp. 308
Author(s):  
Yin Fang-chen ◽  
Yu Liu-Qi

In the hot strip rolling process, the performance of a monitoring system for automatic gauge control (MN-AGC) is influenced greatly by the model mismatch which is caused by the variation of model parameters values. A constrained dynamic matrix control (CDMC) strategy that includes a prediction model, rolling optimization, and feedback correction was used in the MN-AGC. First, the conventional Smith prediction-based control strategy for the MN-AGC was analyzed. Second, the performance index function and optimal control of the CDMC strategy were determined. Finally, simulations and industrial experiments were conducted. The results showed that both control strategies provided good control performance. When model mismatch occurred, the Smith predictor-based MN-AGC resulted in significant overshoot or even oscillations but the control performance of the CDMC-based MN-AGC was not influenced by changes in the model parameters.


Author(s):  
Ali Thamallah ◽  
Anis Sakly ◽  
Faouzi M’Sahli

This article focuses on the tracking and stabilizing issues of a class of discrete switched systems. These systems are characterized by unknown switching sequences, a non-minimum phase, and time-varying or dead modes. In particular, for those governed by an indeterminate switching signal, it is very complicated to synthesize a control law able to systematically approach general reference-tracking difficulties. Taking into account the difficulty to express the dynamic of this class of systems, the present paper presents a new Dynamic matrix control method based on the multi-objective optimization and the truncated impulse response model. The formulation of the optimization problem aims to approach the general step-tracking issues under persistent and indeterminate mode changes and to overcome the stability problem along with retaining as many desirable features of the standard dynamic matrix control (DMC) method as possible. In addition, the formulated optimization problem integrates estimator variables able to manipulate the optimization procedure in favor of the active mode with an appropriate adjustment. It also provides a progressive and smooth multi-objective control law even in the presence of problems whether in subsystems or switching sequences. Finally, simulation examples and comparison tests are conducted to illustrate the potentiality and effectiveness of the developed method.


Sign in / Sign up

Export Citation Format

Share Document