scholarly journals Ischemia/Reperfusion Injury in Human Kidney Transplantation

1998 ◽  
Vol 153 (2) ◽  
pp. 557-566 ◽  
Author(s):  
Dicken D.H. Koo ◽  
Kenneth I. Welsh ◽  
Justin A. Roake ◽  
Peter J. Morris ◽  
Susan V. Fuggle
2020 ◽  
Vol 15 (10) ◽  
pp. 1484-1493
Author(s):  
Elisabet Van Loon ◽  
Evelyne Lerut ◽  
Aleksandar Senev ◽  
Maarten Coemans ◽  
Jacques Pirenne ◽  
...  

Background and objectivesIn preclinical studies, ischemia-reperfusion injury and older donor age are associated with graft inflammation in the early phase after transplantation. In human kidney transplantation, impaired allograft function in the first days after transplantation is often adjudicated to donor- and procedure-related characteristics, such as donor age, donor type, and ischemia times.Design, setting, participants, & measurementsIn a cohort of 984 kidney recipients, 329 indication biopsies were performed within the first 14 days after transplantation. The histologic picture of these biopsies and its relationship with alloimmune risk factors and donor- and procedure-related characteristics were studied, as well as the association with graft failure. Multivariable Cox models were applied to quantify the cause-specific hazard ratios for early rejection and early inflammatory scores, adjusted for potential confounders. For quantification of hazard ratios of early events for death-censored graft failure, landmark analyses starting from day 15 were used.ResultsEarly indication biopsy specimens displayed microvascular inflammation score ≥2 in 30% and tubulointerstitial inflammation score ≥2 in 49%. Rejection was diagnosed in 186 of 329 (57%) biopsies and associated with the presence of pretransplant donor-specific HLA antibodies and the number of HLA mismatches, but not nonimmune risk factors in multivariable Cox proportional hazards analysis. In multivariable Cox proportional hazards analysis, delayed graft function, the graft dysfunction that prompted an early indication biopsy, HLA mismatches, and pretransplant donor-specific HLA antibodies were significantly associated with a higher risk for death-censored graft failure, whereas early acute rejection was not.ConclusionsIndication biopsies performed early after kidney transplantation display inflammatory changes related to alloimmune risk factors. Nonimmune risk factors for ischemia-reperfusion injury, such as cold and warm ischemia time, older donor age, and donor type, were not identified as strong risk factors for early inflammation after human kidney transplantation.


2020 ◽  
Vol 21 (S1) ◽  
Author(s):  
Meeyoung Park ◽  
Chae Hwa Kwon ◽  
Hong Koo Ha ◽  
Miyeun Han ◽  
Sang Heon Song

Abstract Background Acute kidney injury (AKI) is defined as a sudden event of kidney failure or kidney damage within a short period. Ischemia-reperfusion injury (IRI) is a critical factor associated with severe AKI and end-stage kidney disease (ESKD). However, the biological mechanisms underlying ischemia and reperfusion are incompletely understood, owing to the complexity of these pathophysiological processes. We aimed to investigate the key biological pathways individually affected by ischemia and reperfusion at the transcriptome level. Results We analyzed the steady-state gene expression pattern of human kidney tissues from normal (pre-ischemia), ischemia, and reperfusion conditions using RNA-sequencing. Conventional differential expression and self-organizing map (SOM) clustering analyses followed by pathway analysis were performed. Differential expression analysis revealed the metabolic pathways dysregulated in ischemia. Cellular assembly, development and migration, and immune response-related pathways were dysregulated in reperfusion. SOM clustering analysis highlighted the ischemia-mediated significant dysregulation in metabolism, apoptosis, and fibrosis-related pathways, while cell growth, migration, and immune response-related pathways were highly dysregulated by reperfusion after ischemia. The expression of pro-apoptotic genes and death receptors was downregulated during ischemia, indicating the existence of a protective mechanism against ischemic injury. Reperfusion induced alterations in the expression of the genes associated with immune response such as inflammasome and antigen representing genes. Further, the genes related to cell growth and migration, such as AKT, KRAS, and those related to Rho signaling, were downregulated, suggestive of injury responses during reperfusion. Semaphorin 4D and plexin B1 levels were also downregulated. Conclusions We show that specific biological pathways were distinctively involved in ischemia and reperfusion during IRI, indicating that condition-specific therapeutic strategies may be imperative to prevent severe kidney damage after IRI in the clinical setting.


Sign in / Sign up

Export Citation Format

Share Document