Impact of sulfur-in-gasoline on motor vehicle emissions in the metropolitan area of Mexico City☆

Fuel ◽  
2003 ◽  
Vol 82 (13) ◽  
pp. 1605-1612 ◽  
Author(s):  
I Schifter ◽  
L Dı́az ◽  
M Vera ◽  
E Guzmán ◽  
E López-Salinas
2006 ◽  
Vol 6 (3) ◽  
pp. 4689-4725 ◽  
Author(s):  
M. Zavala ◽  
S. C. Herndon ◽  
R. S. Slott ◽  
E. J. Dunlea ◽  
L. C. Marr ◽  
...  

Abstract. A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles and fleet averaged emissions. Results indicate that colectivos, particularly CNG-powered colectivos, are potentially significant contributors of NOx and aldehydes in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in US cities. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas.


2006 ◽  
Vol 6 (12) ◽  
pp. 5129-5142 ◽  
Author(s):  
M. Zavala ◽  
S. C. Herndon ◽  
R. S. Slott ◽  
E. J. Dunlea ◽  
L. C. Marr ◽  
...  

Abstract. A mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles in the form of frequency distributions as well as estimates for the fleet averaged emissions. Our measurements of emission ratios for both CNG and gasoline powered "colectivos" (public transportation buses that are intensively used in the MCMA) indicate that – in a mole per mole basis – have significantly larger NOx and aldehydes emissions ratios as compared to other sampled vehicles in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in U.S. cities. We estimate NOx emissions as 100 600±29 200 metric tons per year for light duty gasoline vehicles in the MCMA for 2003. According to these results, annual NOx emissions estimated in the emissions inventory for this category are within the range of our estimated NOx annual emissions. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


2005 ◽  
Vol 39 (5) ◽  
pp. 931-940 ◽  
Author(s):  
I. Schifter ◽  
L. Díaz ◽  
V. Múgica ◽  
E. López-Salinas

2013 ◽  
Vol 47 (17) ◽  
pp. 10022-10031 ◽  
Author(s):  
Brian C. McDonald ◽  
Drew R. Gentner ◽  
Allen H. Goldstein ◽  
Robert A. Harley

Sign in / Sign up

Export Citation Format

Share Document