scholarly journals Aminopeptidase Y, a new aminopeptidase from Saccharomyces cerevisiae. Purification, properties, localization, and processing by protease B.

1994 ◽  
Vol 269 (18) ◽  
pp. 13644-13650
Author(s):  
T. Yasuhara ◽  
T. Nakai ◽  
A. Ohashi
Genetics ◽  
1987 ◽  
Vol 115 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Charles M Moehle ◽  
Martha W Aynardi ◽  
Michael R Kolodny ◽  
Frances J Park ◽  
Elizabeth W Jones

ABSTRACT We have isolated the structural gene, PRB1, for the vacuolar protease B of Saccharomyces cerevisiae from a genomic library by complementation of the prb1-1122 mutation. Deletion analysis localized the complementing activity to a 3.2-kilobase pair XhoI-HindIII restriction enzyme fragment. The fragment was used to identify a 2.3-kilobase mRNA. S1 endonuclease mapping indicated that the mRNA and the gene were colinear. No introns were detected. The mRNA is of sufficient size to encode a protein of about 69,000 molecular weight, a number much larger than either the mature enzyme (≃30,000 protein molecular weight) or the sole reported precursor (≃39,000 protein molecular weight). These results suggest that proteolytic processing steps beyond that thought to be catalyzed by protease A may be required to convert the initial glycosylated translation product into mature protease B. The PRB1 mRNA is made in substantial amounts only when the cells have exhausted the glucose supply and enter the diauxic plateau. There is an extended time lag between PRB1 transcription and expression of protease B activity. A deletion that removes about 83% of the coding region was constructed as a diploid heterozygote. Spores bearing the deletion germinate, grow at normal rates into colonies, and have no obvious phenotype beyond protease B deficiency.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1277-1292 ◽  
Author(s):  
Rajesh R Naik ◽  
Elizabeth W Jones

Abstract The vacuolar hydrolase protease B in Saccharomyces cerevisiae is synthesized as an inactive precursor (Prb1p). The precursor undergoes post-translational modifications while transiting the secretory pathway. In addition to N- and O -linked glycosylations, four proteolytic cleavages occur during the maturation of Prb1p. Removal of the signal peptide by signal peptidase and the autocatalytic cleavage of the large aminoterminal propeptide occur in the endoplasmic reticulum (ER). Two carboxy-terminal cleavages of the post regions occur in the vacuole: the first cleavage is catalyzed by protease A and the second results from autocatalysis. We have isolated a mutant, pbn1-1, that exhibits a defect in the ER processing of Prb1p. The autocatalytic cleavage of the propeptide from Prb1p does not occur and Prb1p is rapidly degraded in the cytosol. PBN1 was cloned and is identical to YCL052c on chromosome III. PBN1 is an essential gene that encodes a novel protein. Pbn1p is predicted to contain a sub-C-terminal transmembrane domain but no signal sequence. A functional HA epitope-tagged Pbn1p fusion localizes to the ER. Pbn1p is N-glycosylated in its amino-terminal domain, indicating a lumenal orientation despite the lack of a signal sequence. Based on these results, we propose that one of the functions of Pbn1p is to aid in the autocatalytic processing of Prb1p.


2009 ◽  
Vol 13 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Y. LOOZE ◽  
L. GILLET ◽  
M. DECONINCK ◽  
B. COUTEAUX ◽  
E. POLASTRO ◽  
...  

1987 ◽  
Vol 7 (12) ◽  
pp. 4390-4399 ◽  
Author(s):  
C M Moehle ◽  
R Tizard ◽  
S K Lemmon ◽  
J Smart ◽  
E W Jones

The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.


1989 ◽  
Vol 108 (2) ◽  
pp. 309-325 ◽  
Author(s):  
C M Moehle ◽  
C K Dixon ◽  
E W Jones

The vacuolar protease B of Saccharomyces cerevisiae is a subtilisin-like protease encoded by the PRB1 gene. Antibodies raised against a synthetic peptide and an Escherichia coli-derived PRB1 open reading frame (ORF) protein cross-react with authentic protease B from yeast. By using these antibodies, the posttranslational biosynthetic pathway of protease B has been elucidated. Preproprotease B is a 76-kD unglycosylated precursor that enters the endoplasmic reticulum (ER), where it receives one asparagine-linked (Asn-linked) and an undetermined number of non-Asn-linked carbohydrate side chains. The large glycosylated intermediate is proteolytically processed to a 39-kD form before exiting the ER. In the Golgi complex, the 39-kD form becomes 40 kD, due to elaboration of the Asn-linked side chain. The carboxyterminal end of the 40-kD proprotease B undergoes protease A-mediated processing to a 37-kD intermediate, which in turn is quickly processed to 31-kD mature protease B. The ultimate processing step removes a peptide containing the Asn-linked chain; mature PrB has only non-Asn-linked carbohydrate.


1987 ◽  
Vol 7 (12) ◽  
pp. 4390-4399
Author(s):  
C M Moehle ◽  
R Tizard ◽  
S K Lemmon ◽  
J Smart ◽  
E W Jones

The PRB1 gene of Saccharomyces cerevisiae encodes the vacuolar endoprotease protease B. We have determined the DNA sequence of the PRB1 gene and the amino acid sequence of the amino terminus of mature protease B. The deduced amino acid sequence of this serine protease shares extensive homology with those of subtilisin, proteinase K, and related proteases. The open reading frame of PRB1 consists of 635 codons and, therefore, encodes a very large protein (molecular weight, greater than 69,000) relative to the observed size of mature protease B (molecular weight, 33,000). Examination of the gene sequence, the determined amino-terminal sequence, and empirical molecular weight determinations suggests that the preproenzyme must be processed at both amino and carboxy termini and that asparagine-linked glycosylation occurs at an unusual tripeptide acceptor sequence.


2001 ◽  
Vol 36 (2) ◽  
pp. 196-201 ◽  
Author(s):  
F. Seibold ◽  
O. Stich ◽  
R. Hufnagl ◽  
S. Kamil ◽  
M. Scheurlen

2007 ◽  
Vol 45 (08) ◽  
Author(s):  
S Schmechel ◽  
V Schachinger ◽  
F Seibold ◽  
C Tillack ◽  
T Ochsenkühn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document