scholarly journals Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and steel factor and is constitutively increased by p210BCR/ABL.

1994 ◽  
Vol 269 (7) ◽  
pp. 5016-5021 ◽  
Author(s):  
T. Matsuguchi ◽  
R. Salgia ◽  
M. Hallek ◽  
M. Eder ◽  
B. Druker ◽  
...  
Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Rosemary E. Gale ◽  
Robin W. Freeburn ◽  
Asim Khwaja ◽  
Rajesh Chopra ◽  
David C. Linch

We report here a naturally occurring isoform of the human β chain common to the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 (GMRβC) with a truncated intracytoplasmic tail caused by deletion of a 104-bp exon in the membrane-proximal region of the chain. This β intracytoplasmic truncated chain (βIT) has a predicted tail of 46 amino acids, instead of 432 for βC, with 23 amino acids in common with βC and then a new sequence of 23 amino acids. In primary myeloid cells, βIT comprised approximately 20% of the total β chain message, but was increased up to 90% of total in blast cells from a significant proportion of patients with acute leukemia. Specific anti-βITantibodies demonstrated its presence in primary myeloid cells and cell lines. Coexpression of βIT converted low-affinity GMRα chains (KD 2.5 nmol/L) to higher-affinity αβ complexes (KD 200 pmol/L). These could bind JAK2 that was tyrosine-phosphorylated by stimulation with GM-CSF. βITdid not support GM-CSF–induced proliferation when cotransfected with GMRα into CTLL-2 cells. Therefore, it may interfere with the signal-transducing properties of the βC chain and play a role in the pathogenesis of leukemia.


Blood ◽  
1998 ◽  
Vol 91 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Rosemary E. Gale ◽  
Robin W. Freeburn ◽  
Asim Khwaja ◽  
Rajesh Chopra ◽  
David C. Linch

Abstract We report here a naturally occurring isoform of the human β chain common to the receptors for granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 (GMRβC) with a truncated intracytoplasmic tail caused by deletion of a 104-bp exon in the membrane-proximal region of the chain. This β intracytoplasmic truncated chain (βIT) has a predicted tail of 46 amino acids, instead of 432 for βC, with 23 amino acids in common with βC and then a new sequence of 23 amino acids. In primary myeloid cells, βIT comprised approximately 20% of the total β chain message, but was increased up to 90% of total in blast cells from a significant proportion of patients with acute leukemia. Specific anti-βITantibodies demonstrated its presence in primary myeloid cells and cell lines. Coexpression of βIT converted low-affinity GMRα chains (KD 2.5 nmol/L) to higher-affinity αβ complexes (KD 200 pmol/L). These could bind JAK2 that was tyrosine-phosphorylated by stimulation with GM-CSF. βITdid not support GM-CSF–induced proliferation when cotransfected with GMRα into CTLL-2 cells. Therefore, it may interfere with the signal-transducing properties of the βC chain and play a role in the pathogenesis of leukemia.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2880-2887 ◽  
Author(s):  
K Okuda ◽  
JS Sanghera ◽  
SL Pelech ◽  
Y Kanakura ◽  
M Hallek ◽  
...  

Abstract Granulocyte-macrophage colony-stimulating factor (GM-CSF), Interleukin- 3 (IL-3), and Steel Factor (SF) induce proliferation of hematopoietic cells through binding to specific, high-affinity, cell surface receptors. However, little is known about postreceptor signal transduction pathways. In previous studies, we noted that each of these three factors could independently support proliferation of the human MO7 cell line, and also that each factor induced a rapid increase in protein-tyrosyl phosphorylation. Although the proteins phosphorylated on tyrosine by GM-CSF and IL-3 are similar or identical in MO7 cells, many of the proteins that are phosphorylated on tyrosine after SF are different. However, two proteins, p42 and p44, were prominently phosphorylated in response to all three of the factors. In MO7 cells, the tyrosyl phosphorylation of p42 and p44 was transient, peaking at 5 to 15 minutes. In contrast to many of the other proteins which are tyrosyl phosphorylated in response to these factors, phosphorylation of p42 and p44 was temperature-dependent, occurring at 37 degrees C, but not at 4 degrees C. We identified the p42 protein as p42 Mitogen- Activated Protein Kinase (p42mapk, ERK-2) and the p44 as a p42mapk- related protein using monospecific antisera to MAP kinase. GM-CSF, IL- 3, and SF were each found to induce MAP kinase activity when assayed in vitro using myelin basic protein (MBP) as a substrate. Remarkably, we found that GM-CSF-induced tyrosyl phosphorylation of p42 and p44 even in nonproliferative cells (neutrophils) that respond to this CSF, and that p42 and p44 were two of the most prominently tyrosyl phosphorylated proteins following GM-CSF stimulation of these cells. These results implicate p42mapk and p44 as important signal transducing molecules in myeloid cells, and it is likely that these kinases play a role as part of a sequential “kinase cascade” linking growth factor receptors to mitogenesis and other cellular responses.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2880-2887 ◽  
Author(s):  
K Okuda ◽  
JS Sanghera ◽  
SL Pelech ◽  
Y Kanakura ◽  
M Hallek ◽  
...  

Granulocyte-macrophage colony-stimulating factor (GM-CSF), Interleukin- 3 (IL-3), and Steel Factor (SF) induce proliferation of hematopoietic cells through binding to specific, high-affinity, cell surface receptors. However, little is known about postreceptor signal transduction pathways. In previous studies, we noted that each of these three factors could independently support proliferation of the human MO7 cell line, and also that each factor induced a rapid increase in protein-tyrosyl phosphorylation. Although the proteins phosphorylated on tyrosine by GM-CSF and IL-3 are similar or identical in MO7 cells, many of the proteins that are phosphorylated on tyrosine after SF are different. However, two proteins, p42 and p44, were prominently phosphorylated in response to all three of the factors. In MO7 cells, the tyrosyl phosphorylation of p42 and p44 was transient, peaking at 5 to 15 minutes. In contrast to many of the other proteins which are tyrosyl phosphorylated in response to these factors, phosphorylation of p42 and p44 was temperature-dependent, occurring at 37 degrees C, but not at 4 degrees C. We identified the p42 protein as p42 Mitogen- Activated Protein Kinase (p42mapk, ERK-2) and the p44 as a p42mapk- related protein using monospecific antisera to MAP kinase. GM-CSF, IL- 3, and SF were each found to induce MAP kinase activity when assayed in vitro using myelin basic protein (MBP) as a substrate. Remarkably, we found that GM-CSF-induced tyrosyl phosphorylation of p42 and p44 even in nonproliferative cells (neutrophils) that respond to this CSF, and that p42 and p44 were two of the most prominently tyrosyl phosphorylated proteins following GM-CSF stimulation of these cells. These results implicate p42mapk and p44 as important signal transducing molecules in myeloid cells, and it is likely that these kinases play a role as part of a sequential “kinase cascade” linking growth factor receptors to mitogenesis and other cellular responses.


Blood ◽  
1989 ◽  
Vol 74 (8) ◽  
pp. 2652-2656 ◽  
Author(s):  
T Gesner ◽  
RA Mufson ◽  
KJ Turner ◽  
SC Clark

Abstract Granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) each bind specifically to a small number of high- affinity receptors present on the surface of the cells of the acute myelogenous leukemia line, KG-1. Through chemical cross-linking of IL-3 and GM-CSF to KG-1 cells, we identified distinct binding proteins for each of these cytokines with approximate molecular masses of 69 and 93 Kd, respectively. Although these two binding proteins are distinct, GM- CSF and IL-3 compete with each other for binding to KG-1 cells. Other cell lines, which express receptors for either factor but not for both do not display this cross-competition for binding with IL-3 and GM-CSF. These findings imply that distinct IL-3 and GM-CSF binding proteins are expressed on the cell surface and that an association exists between these proteins on KG-1 cells.


Blood ◽  
1992 ◽  
Vol 79 (11) ◽  
pp. 2960-2964 ◽  
Author(s):  
T Berney ◽  
T Shibata ◽  
R Merino ◽  
Y Chicheportiche ◽  
V Kindler ◽  
...  

Abstract We have evaluated the therapeutic activity of recombinant erythropoietin (rEpo), in comparison with recombinant interleukin-3 (rIL-3) and granulocyte-macrophage colony-stimulating factor (rGM-CSF), on a lethal form of acute anemia resulting from Fc gamma receptor- mediated erythrophagocytosis after a single injection (500 micrograms) of a monoclonal anti-mouse red blood cell (MRBC) autoantibody. Continuous perfusion of rEpo before the administration of anti-MRBC monoclonal antibody completely protected animals from death due to anemia with a rapid recovery, while no protection was obtained by rIL-3 perfusion. In contrast, rGM-CSF perfusion markedly accelerated the progression of anemia and the mortality rate. This was found to result from an enhancement of erythrophagocytosis by Kupffer cells and by polymorphonuclear leukocytes that massively infiltrated the livers. Even after the injection of a sublethal dose (100 micrograms) of anti- MRBC monoclonal antibody, rGM-CSF-perfused mice died of a severe form of acute anemia. Furthermore, we have shown that rEpo was able to treat efficiently a spontaneous form of autoimmune hemolytic anemia in a majority of anemic NZB mice, whereas rGM-CSF markedly aggravated anemia. This may be of clinical importance, because GM-CSF administration could exhibit an adverse effect in some autoimmune diseases that involve autoimmune anemia.


Sign in / Sign up

Export Citation Format

Share Document