scholarly journals Inhibition by brefeldin A of protein secretion from the apical cell surface of Madin-Darby canine kidney cells.

1991 ◽  
Vol 266 (27) ◽  
pp. 17729-17732 ◽  
Author(s):  
S.H. Low ◽  
S.H. Wong ◽  
B.L. Tang ◽  
P. Tan ◽  
V.N. Subramaniam ◽  
...  
2002 ◽  
Vol 283 (4) ◽  
pp. F630-F639 ◽  
Author(s):  
Wei-Zhong Zeng ◽  
Victor Babich ◽  
Bernardo Ortega ◽  
Raymond Quigley ◽  
Stanley J. White ◽  
...  

ROMK channels are present in the cortical collecting ducts of kidney and are responsible for K+secretion in this nephron segment. Recent studies suggest that endocytosis of ROMK channels is important for regulation of K+ secretion in cortical collecting ducts. We investigated the molecular mechanisms for endocytosis of ROMK channels expressed in Xenopus laevis oocytes and cultured Madin-Darby canine kidney cells. When plasma membrane insertion of newly synthesized channel proteins was blocked by incubation with brefeldin A, ROMK currents decreased with a half-time of ∼6 h. Coexpression with the Lys44→Ala dominant-negative mutant dynamin, but not wild-type dynamin, reduced the rate of reduction of ROMK in the presence of brefeldin A. Mutation of Asn371 to Ile in the putative NPXY internalization motif of ROMK1 abolished the effect of the Lys44→Ala dynamin mutant on endocytosis of the channel. Coimmunoprecipitation study and confocal fluorescent imaging revealed that ROMK channels associated with clathrin coat proteins in Madin-Darby canine kidney cells. These results provide compelling evidence for endocytosis of ROMK channels via clathrin-coated vesicles.


2002 ◽  
Vol 362 (2) ◽  
pp. 359 ◽  
Author(s):  
Svein Olav KOLSET ◽  
Kristian PRYDZ ◽  
Katja FJELDSTAD ◽  
Fariba SAFAIYAN ◽  
Tram Thu VUONG ◽  
...  

2002 ◽  
Vol 277 (39) ◽  
pp. 36272-36279 ◽  
Author(s):  
Katja Fjeldstad ◽  
Mona E. Pedersen ◽  
Tram Thu Vuong ◽  
Svein Olav Kolset ◽  
Line Mari Nordstrand ◽  
...  

2016 ◽  
Vol 27 (14) ◽  
pp. 2259-2271 ◽  
Author(s):  
Aleksandr Treyer ◽  
Mario Pujato ◽  
Ximo Pechuan ◽  
Anne Müsch

For several decades, the trans-Golgi network (TGN) was considered the most distal stop and hence the ultimate protein-sorting station for distinct apical and basolateral transport carriers that reach their respective surface domains in the direct trafficking pathway. However, recent reports of apical and basolateral cargoes traversing post-Golgi compartments accessible to endocytic ligands before their arrival at the cell surface and the post-TGN breakup of large pleomorphic membrane fragments that exit the Golgi region toward the surface raised the possibility that compartments distal to the TGN mediate or contribute to biosynthetic sorting. Here we describe the development of a novel assay that quantitatively distinguishes different cargo pairs by their degree of colocalization at the TGN and by the evolution of colocalization during their TGN-to-surface transport. Keys to the high resolution of our approach are 1) conversion of perinuclear organelle clustering into a two-dimensional microsomal spread and 2) identification of TGN and post-TGN cargo without the need for a TGN marker that universally cosegregates with all cargo. Using our assay, we provide the first evidence that apical NTRp75 and basolateral VSVG in Madin–Darby canine kidney cells still undergo progressive sorting after they exit the TGN toward the cell surface.


1997 ◽  
Vol 326 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Gert ZIMMER ◽  
Friedrich LOTTSPEICH ◽  
Andrea MAISNER ◽  
Hans-Dieter KLENK ◽  
Georg HERRLER

gp40 has been recently identified as a major apical cell-surface sialoglycoprotein of type-I Madin–Darby canine kidney cells, a cell line widely used for the study of polarized transport. The determination of two internal amino acid sequences of the purified glycoprotein by Edman degradation enabled us to isolate the cDNA encoding the 18.6 kDa protein backbone of gp40. Sequence analysis revealed that gp40 is a type-I membrane protein which has several characteristics in common with glycophorin A and other mucin-type glycoproteins. At least 14 serine/threonine residues were found to be used for O-glycosylation. No potential sites for N-glycosylation were detected. gp40 turned out to represent the canine homologue of a cell-surface antigen expressed by various epithelial and non-epithelial cells in rat and mouse. Potential O-glycosylation sites, transmembrane and cytoplasmic domains were found to be highly conserved in the three species. gp40 was detected in canine lung, intestine, kidney, brain and heart but not in liver and spleen. The subline II of Madin–Darby canine kidney cells was found not to express gp40. Stable expression of gp40 in transfected type-II cells revealed that gp40 is predominantly delivered to the apical plasma membrane. N-Glycans and a glycosylphosphatidylinositol anchor, both proposed apical targeting signals, are absent from gp40, indicating that other determinants are responsible for its polarized transport.


Sign in / Sign up

Export Citation Format

Share Document