scholarly journals The alpha 2A-adrenergic receptor is targeted directly to the basolateral membrane domain of Madin-Darby canine kidney cells independent of coupling to pertussis toxin-sensitive GTP-binding proteins

1993 ◽  
Vol 268 (15) ◽  
pp. 11340-11347
Author(s):  
J.R. Keefer ◽  
L.E. Limbird
2001 ◽  
Vol 12 (8) ◽  
pp. 2257-2274 ◽  
Author(s):  
Raul Rojas ◽  
Wily G. Ruiz ◽  
Som-Ming Leung ◽  
Tzuu-Shuh Jou ◽  
Gerard Apodaca

Polarized epithelial cells maintain the asymmetric composition of their apical and basolateral membrane domains by at least two different processes. These include the regulated trafficking of macromolecules from the biosynthetic and endocytic pathway to the appropriate membrane domain and the ability of the tight junction to prevent free mixing of membrane domain-specific proteins and lipids. Cdc42, a Rho family GTPase, is known to govern cellular polarity and membrane traffic in several cell types. We examined whether this protein regulated tight junction function in Madin-Darby canine kidney cells and pathways that direct proteins to the apical and basolateral surface of these cells. We used Madin-Darby canine kidney cells that expressed dominant-active or dominant-negative mutants of Cdc42 under the control of a tetracycline-repressible system. Here we report that expression of dominant-active Cdc42V12 or dominant-negative Cdc42N17 altered tight junction function. Expression of Cdc42V12 slowed endocytic and biosynthetic traffic, and expression of Cdc42N17 slowed apical endocytosis and basolateral to apical transcytosis but stimulated biosynthetic traffic. These results indicate that Cdc42 may modulate multiple cellular pathways required for the maintenance of epithelial cell polarity.


1984 ◽  
Vol 99 (3) ◽  
pp. 796-782 ◽  
Author(s):  
M Pesonen ◽  
W Ansorge ◽  
K Simons

The G protein of vesicular stomatitis virus, implanted into the apical plasma membrane of Madin-Darby canine kidney cells, is rapidly transcytosed to the basolateral membrane. In this and the accompanying paper (Pesonen, M., R. Bravo, and K. Simons, 1984, J. Cell Biol. 99:803-809.) we have studied the intracellular route by which the G protein traverses during transcytosis. Using Percoll density gradient centrifugation and free flow electrophoresis we could demonstrate that the G protein is endocytosed into a nonlysosomal compartment with a density of approximately 1.05 g/cm3, which has many of the characteristics of endosomes. Transcytosis to the basolateral membrane appeared to occur from this compartment. No direct evidence for the involvement of lysosomes in the transcytotic route could be obtained. No G protein was detected in the lysosomes when transcytosis of G protein was occurring. Moreover, at 21 degrees C when passage of G protein to the lysosomes was shown to be arrested, transcytosis of G protein could still be demonstrated.


1984 ◽  
Vol 99 (3) ◽  
pp. 803-809 ◽  
Author(s):  
M Pesonen ◽  
R Bravo ◽  
K Simons

In the preceding paper (Pesonen M., W. Ansorge, and K. Simons, 1984, J. Cell Biol., 99:796-802), we have shown that transcellular transport of the membrane glycoprotein G of vesicular stomatitis virus implanted into the apical membrane of Madin-Darby canine kidney cells is transcytosed through the endosomal compartment to the basolateral plasma membrane. To determine whether the Golgi complex was involved in this process, G protein lacking sialic acid or all of the terminal sugars was implanted into the apical membrane and allowed to move to the basolateral membrane. Using the criteria of endoglycosidase H sensitivity, binding to Ricinus communis agglutinin and two-dimensional gel electrophoresis, the sugars on the transcytosed G protein were found to be the same as in the starting material. The absence of any involvement of the Golgi complex in transcytosis was supported by subcellular fractionation studies in which transcytosing G protein was never found in fractions containing galactosyl transferase.


1996 ◽  
Vol 271 (2) ◽  
pp. 995-1002 ◽  
Author(s):  
Christine Saunders ◽  
Jeffrey R. Keefer ◽  
Amy P. Kennedy ◽  
Jack N. Wells ◽  
Lee E. Limbird

1990 ◽  
Vol 10 (12) ◽  
pp. 6578-6585
Author(s):  
P Chavrier ◽  
M Vingron ◽  
C Sander ◽  
K Simons ◽  
M Zerial

Molecular analysis of Saccharomyces cerevisiae secretion mutants has led to the identification of two Ras-like GTP-binding proteins, Ypt1p and Sec4p, which are essential for transport along the exocytic route. To study the regulation of membrane traffic in epithelial cells, a set of 11 clones encoding proteins similar to the YPT1/SEC4 products were isolated from an MDCK (Madin-Darby canine kidney) cell cDNA library. Four of these proteins, Rab8, -9, -10, and -11, are novel members of this subfamily of Ras-like proteins, and two of them are closely related to Ypt1p and Sec4p. The ratio of the number of clones isolated over the total number screened reveals a high level of complexity for this subfamily of GTP-binding proteins. This diversity supports their proposed function in controlling different steps in membrane traffic.


1983 ◽  
Vol 97 (3) ◽  
pp. 627-637 ◽  
Author(s):  
K Matlin ◽  
D F Bainton ◽  
M Pesonen ◽  
D Louvard ◽  
N Genty ◽  
...  

The G protein of vesicular stomatitis virus was implanted in the apical plasma membrane of Madin-Darby canine kidney cells by low pH-dependent fusion of the viral envelope with the cellular membrane. The amount of fusion as determined by removal of unfused virions, either by tryptic digestion or by EDTA treatment at 0 degree C, was 22-24% of the cell-bound virus radioactivity. Upon incubation of cells after implantation, the amount of G protein as detected by immunofluorescence diminished on the apical membrane and appeared within 30 min on the basolateral membrane. At the same time some G protein fluorescence was also seen in intracellular vacuoles. The observations by immunofluorescence were confirmed and extended by electron microscopy. Using immunoperoxidase localization, G protein was seen to move into irregularly shaped vacuoles (endosomes) and multivesicular bodies and to appear on the basolateral plasma membrane. These results suggest that the apical and basolateral domains of Madin-Darby canine kidney cells are connected by an intracellular route.


Sign in / Sign up

Export Citation Format

Share Document