scholarly journals Destruction of acetylcholine receptor by decaying 125I-alpha-bungarotoxin.

1984 ◽  
Vol 259 (22) ◽  
pp. 14033-14037
Author(s):  
J Schmidt
1983 ◽  
Vol 97 (2) ◽  
pp. 489-498 ◽  
Author(s):  
H B Peng

Whole-mount stereo electron microscopy has been used to examine the cytoskeletal organization of the presynaptic nerve terminal and the acetylcholine receptor (AChR) clusters in cultures of Xenopus nerve and muscle cells. The cells were grown on Formvar-coated gold electron microscope (EM) finder grids. AChR clusters were identified in live cultures by fluorescence microscopy after labeling with tetramethylrhodamine-conjugated alpha-bungarotoxin. After chemical fixation and critical-point drying, the cytoplasmic specializations of identified cells were examined in whole mount under an electron microscope. In the presynaptic nerve terminal opposite to the AChR cluster, synaptic vesicles were clearly suspended in a lattice of 5-12-nm filaments. Stereo microscopy showed that these filaments directly contacted the vesicles. This lattice was also contiguous with the filament bundle that formed the core of the axon. At the AChR cluster, an increased cytoplasmic density differentiated this area from the rest of the cytoplasm. This density was composed of a meshwork of filaments with a mean diameter of 6 nm and irregularly shaped membrane cisternae 0.1-0.5 micron in width, which resembled the smooth endoplasmic reticulum. These membrane structures were interconnected via the filaments. Organelles that were characteristic of the bulk of the sarcoplasm such as the rough endoplasmic reticulum and the polysomes, were absent from the cytoplasm associated with the AChR cluster. These results indicate that the cytoskeleton may play an important role in the development and/or the maintenance of the neuromuscular synapse, including the release of transmitter in the nerve terminal and the clustering of AChRs in the postsynaptic membrane.


1982 ◽  
Vol 92 (1) ◽  
pp. 231-236 ◽  
Author(s):  
J Prives ◽  
A B Fulton ◽  
S Penman ◽  
M P Daniels ◽  
C N Christian

To monitor the interaction of cell surface acetylcholine (AcCho) receptors with the cytoskeleton, cultured muscle cells were labeled with radioactive or fluorescent alpha-bungarotoxin and extracted with Triton X-100, using conditions that preserve internal structure. A significant population of the AcCho receptors is retained on the skeletal framework remaining after detergent extraction. The skeleton organization responsible for restricting AcCho receptors to a patched region may also result in their retention after detergent extraction.


1985 ◽  
Vol 100 (1) ◽  
pp. 235-244 ◽  
Author(s):  
P W Luther ◽  
H B Peng

The localization of membrane-associated specializations (basal lamina and cytoplasmic density) at sites of acetylcholine receptor (AChR) aggregation is consistent with an involvement of these structures in receptor stabilization. We investigated the occurrence of these specializations in association with AChR aggregates that develop at the cathode-facing edge of Xenopus muscle cells during exposure to a DC electric field. The cultures were labeled with a fluorescent conjugate of alpha-bungarotoxin and the receptor distribution on selected cells was determined before and after exposure to the field. In thin sections taken from the same cells, the cathode-facing edge was characterized by plaques of basal lamina and cytoplasmic density co-extensive with sarcolemma of increased density. In sections cut in a plane similar to the fluorescence image, it was possible to demonstrate that the specializations were concentrated at areas of field-induced AChR aggregation, and at receptor clusters existing on control cells. This finding further indicates that these structures participate in AChR stabilization, and that the mechanisms involved in AChR aggregation that result from field exposure and nerve contact may be similar.


1984 ◽  
Vol 224 (3) ◽  
pp. 995-1000 ◽  
Author(s):  
D J McCormick ◽  
M Z Atassi

The sequence of the alpha-chain of the acetylcholine receptor of T. californica has been determined by recent cloning studies. The integrity of the disulphide bond between Cys-128 and cys-142 has been shown to be important for the maintenance of the binding activity of the receptor, thus implicating the regions around the disulphide bridge in binding with acetylcholine. In the present work, a synthetic peptide containing this loop region (residues 125-147) was synthesized. Solid-phase radiometric binding assays demonstrated a high binding of 125I-labelled alpha-bungarotoxin to the synthetic peptide. It was further shown that the free peptide bound well to [3H]acetylcholine. Additional experiments demonstrated that pretreatment of peptide 125-147 with 2-mercaptoethanol destroyed its binding activity, clearly showing that the integrity of the disulphide structure was essential for binding. Unlabelled acetylcholine also inhibited the binding of labelled acetylcholine to the synthetic peptide. The region 125-147, therefore, contains essential elements of the acetylcholine binding site of the Torpedo receptor.


Sign in / Sign up

Export Citation Format

Share Document