Study of the stability of hydrogenated amorphous silicon using tight-binding molecular dynamics

1998 ◽  
Vol 240 (1-3) ◽  
pp. 29-34 ◽  
Author(s):  
Runyu Yang ◽  
Jai Singh
1997 ◽  
Vol 467 ◽  
Author(s):  
R. Biswas ◽  
Qiming Li ◽  
B. C. Pan ◽  
Y. Yoon

ABSTRACTTight-binding molecular dynamics calculations reveal a new mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicon and breaking their Si-Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network and have lower energies than H at the center of stretched Si-Si bonds.


1985 ◽  
Vol 49 ◽  
Author(s):  
Martin Stutzmann ◽  
Warren B. Jackson ◽  
Chuang Chuang Tsai

AbstractThe dependence of the creation and the annealing of metastable dangling bonds in hydrogenated amorphous silicon on various material parameters will be discussed in the context of a recently proposed model. After a brief review of the kinetic behaviour governing defect creation and annealing in undoped a- Si:H, a number of special cases will be analyzed: the influence of alloying with O, N, C, and Ge, changes introduced by doping and compensation, and the role of mechanical stress. Finally, possibilities to increase the stability of a-Si:H based devices will be examined.


1988 ◽  
Vol 141 ◽  
Author(s):  
Laurent J. Lewis ◽  
Normand Mousseau ◽  
FranÇois Drolet

AbstractA new algorithm for generating fully-coordinated hydrogenated amorphous silicon models with periodic boundary conditions is presented. The hydrogen is incorporated into an a-Si matrix by a bond-switching process similar to that proposed by Wooten, Winer, and Weaire, making sure that four-fold coordination is preserved and that no rings with less than 5 members are created. After each addition of hydrogen, the structure is fully relaxed. The models so obtained, to be used as input to molecular dynamics simulations, are found to be in good agreement with experiment. A model with 12 at.% H is discussed in detail.


1995 ◽  
Vol 78 (1) ◽  
pp. 317-320 ◽  
Author(s):  
J. P. Kleider ◽  
C. Longeaud ◽  
M. Barranco‐Diaz ◽  
P. Morin ◽  
P. Roca i Cabarrocas

2001 ◽  
Vol 664 ◽  
Author(s):  
N. Hata ◽  
C. M. Fortmann ◽  
A. Matsuda

ABSTRACTPrevious ellipsometric studies of the stability of amorphous silicon (a-Si:H) found reversible changes in the pseudo-dielectric functions. These changes were slow to generate and slow to anneal away. These slow changes are associated with a dangling bond related structural change. Since any light-induced change in the dielectric function is useful for photonic engineering, we undertook the present more detailed study of light induced optical effects in a-Si:H. The optical pseudo-dielectric functions of hydrogenated amorphous silicon (a-Si:H) were measured using spectroscopic ellipsometry (SE) and the “through-the-substrate” measurement technique as a function of measurement temperature and bias light illumination. For the first time we report a light-induced change in a-Si:H materials that is fast, bias-light-dependent, reversible, and temperature dependent. This effect, while not completely understood, offers exciting new prospects for photonic engineering.


1995 ◽  
Vol 67 (25) ◽  
pp. 3786-3788 ◽  
Author(s):  
Jae Seong Byun ◽  
Hong Bin Jeon ◽  
Kyung Ha Lee ◽  
Jin Jang

Sign in / Sign up

Export Citation Format

Share Document