Vibrational behavior of an initially stressed orthotropic circular Mindlin plate

1988 ◽  
Vol 123 (1) ◽  
pp. 145-156 ◽  
Author(s):  
I.H. Yang ◽  
J.A. Shieh
2021 ◽  
Vol 10 (1) ◽  
pp. 414-430
Author(s):  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song ◽  
Jingli Wang ◽  
Li Sun ◽  
...  

Abstract The sandwich structures are three- or multilayered structures such that their mechanical properties are better than each single layer. In the current research, a three-layered cylindrical shell including a functionally graded porous core and two reinforced nanocomposite face sheets resting on the Pasternak foundation is used as model to provide a comprehensive understanding of vibrational behavior of such structures. The core is made of limestone, while the epoxy is utilized as the top and bottom layers’ matrix phase and also it is reinforced by the graphene nanoplatelets (GNPs). The pattern of the GNPs dispersion and the pores distribution play a crucial role at the continuous change of the layers’ properties. The sinusoidal shear deformation shells theory and the Hamilton’s principle are employed to derive the equations of motion for the mentioned cylindrical sandwich shell. Ultimately, the impacts of the model’s geometry, foundation moduli, mode number, and deviatory radius on the vibrational behavior are investigated and discussed. It is revealed that the natural frequency and rotation angle of the sandwich shell are directly related. Moreover, mid-radius to thickness ratio enhancement results in the natural frequency reduction. The results of this study can be helpful for the future investigations in such a broad context. Furthermore, for the pipe factories current study can be effective at their designing procedure.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
R. M. Arif Khalil ◽  
Muhammad Iqbal Hussain ◽  
Nyla Saeed ◽  
Anwar Manzoor Rana ◽  
Fayyaz Hussain

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yury A. Rossikhin ◽  
Marina V. Shitikova ◽  
Phan Thanh Trung

In the present paper, the problem on impact of a viscoelastic sphere against a viscoelastic plate is considered with due account for the extension of plate’s middle surface and local bearing of sphere and plate’s materials via the Hertz theory. The standard linear solid models with conventional derivatives and with fractional-order derivatives are used as viscoelastic models, respectively, outside and within the contact domain. As a result of impact, transient waves (surfaces of strong discontinuity) are generated in the plate, behind the wave fronts of which up to the boundaries of the contact domain the solution is constructed in terms of one-term ray expansions due to short-time duration of the impact process. The motion of the contact zone occurs under the action of extension forces acting in the plate’s middle surface, transverse force, and the Hertzian contact force. The suggested approach allows one to find the time-dependence of the impactor’s indentation into the target and the Hertzian contact force.


1981 ◽  
Author(s):  
Donald M. Duggan ◽  
Eric R. Wallace ◽  
Stan R. Caldwell
Keyword(s):  

1998 ◽  
Vol 06 (04) ◽  
pp. 435-452 ◽  
Author(s):  
Robert P. Gilbert ◽  
Zhongyan Lin ◽  
Klaus Hackl

Normal-mode expansions for Green's functions are derived for ocean–bottom systems. The bottom is modeled by Kirchhoff and Reissner–Mindlin plate theories for elastic and poroelastic materials. The resulting eigenvalue problems for the modal parameters are investigated. Normal modes are calculated by Hankel transformation of the underlying equations. Finally, the relation to the inverse problem is outlined.


1980 ◽  
Author(s):  
Donald M. Duggan ◽  
Eric R. Wallace ◽  
Stan R. Caldwell

Sign in / Sign up

Export Citation Format

Share Document