RECONSTITUTION OF HUMAN CORPORAL SMOOTH MUSCLE AND ENDOTHELIAL CELLS IN VIVO

1999 ◽  
Vol 162 (3 Part 2) ◽  
pp. 1109-1109
2004 ◽  
Vol 286 (3) ◽  
pp. H1043-H1056 ◽  
Author(s):  
Nikolaos M. Tsoukias ◽  
Mahendra Kavdia ◽  
Aleksander S. Popel

Nitric oxide (NO) plays many important physiological roles, including the regulation of vascular smooth muscle tone. In response to hemodynamic or agonist stimuli, endothelial cells produce NO, which can diffuse to smooth muscle where it activates soluble guanylate cyclase (sGC), leading to cGMP formation and smooth muscle relaxation. The close proximity of red blood cells suggests, however, that a significant amount of NO released will be scavenged by blood, and thus the issue of bioavailability of endothelium-derived NO to smooth muscle has been investigated experimentally and theoretically. We formulated a mathematical model for NO transport in an arteriole to test the hypothesis that transient, burst-like NO production can facilitate efficient NO delivery to smooth muscle and reduce NO scavenging by blood. The model simulations predict that 1) the endothelium can maintain a physiologically significant amount of NO in smooth muscle despite the presence of NO scavengers such as hemoglobin and myoglobin; 2) under certain conditions, transient NO release presents a more efficient way for activating sGC and it can increase cGMP formation severalfold; and 3) frequency-rather than amplitude-dependent control of cGMP formation is possible. This suggests that it is the frequency of NO bursts and perhaps the frequency of Ca2+ oscillations in endothelial cells that may limit cGMP formation and regulate vascular tone. The proposed hypothesis suggests a new functional role for Ca2+ oscillations in endothelial cells. Further experimentation is needed to test whether and under what conditions in silico predictions occur in vivo.


1992 ◽  
Vol 263 (6) ◽  
pp. H1880-H1887 ◽  
Author(s):  
R. M. Elias ◽  
J. Eisenhoffer ◽  
M. G. Johnston

Studies with a sheep isolated duct preparation in vivo demonstrated that the route of administration of hemoglobin was important in demonstrating its inhibitory effect on lymphatic pumping. With autologous oxyhemoglobin administered intravenously (final plasma concentration 5 x 10(-5) M), pumping was not inhibited. However, the addition of oxyhemoglobin (5 x 10(-5) M) into the reservoir (lumen of the duct) resulted in > 95% inhibition of pumping. The extraluminal administration of oxyhemoglobin (10(-5) M) to bovine mesenteric lymphatics in vitro resulted in a 40% inhibition of pumping, whereas the introduction of oxyhemoglobin (10(-5) M) into the lumen of the vessels suppressed pumping 95%. In vessels mechanically denuded of endothelium, intraluminal oxyhemoglobin inhibited pumping 50%. These results suggested that oxyhemoglobin depressed pumping through an effect on both smooth muscle and endothelium. Once pumping was inhibited with oxyhemoglobin administration, stimulation of the duct with elevations in transmural pressure restored pumping activity when endothelial cells were present. However, in the absence of endothelium, pumping decreased with increases in distending pressures. We conclude that oxyhemoglobin has a direct inhibitory effect on lymphatic smooth muscle. The ability of oxyhemoglobin to alter the pressure range over which the lymph pump operates appears to be dependent on an intact endothelium.


2000 ◽  
Vol 278 (6) ◽  
pp. H1832-H1839 ◽  
Author(s):  
Donald G. Welsh ◽  
Steven S. Segal

We tested whether local and conducted responses to ACh depend on factors released from endothelial cells (EC) in cheek pouch arterioles of anesthetized hamsters. ACh was delivered from a micropipette (1 s, 500 nA), while arteriolar diameter (rest, ∼40 μm) was monitored at the site of application (local) and at 520 and 1,040 μm upstream (conducted). Under control conditions, ACh elicited local (22–65 μm) and conducted (14–44 μm) vasodilation. Indomethacin (10 μM) had no effect, whereas N ω-nitro-l-arginine (100 μM) reduced local and conducted vasodilation by 5–8% ( P < 0.05). Miconazole (10 μM) or 17-octadecynoic acid (17-ODYA; 10 μM) diminished local vasodilation by 15–20% and conducted responses by 50–70% ( P < 0.05), suggesting a role for cytochrome P-450 (CYP) metabolites in arteriolar responses to ACh. Membrane potential ( E m) was recorded in smooth muscle cells (SMC) and in EC identified with dye labeling. At rest (control E m, typically −30 mV), ACh evoked local (15–32 mV) and conducted (6–31 mV) hyperpolarizations in SMC and EC. Miconazole inhibited SMC and EC hyperpolarization, whereas 17-ODYA inhibited hyperpolarization of SMC but not of EC. Findings indicate that ACh-induced release of CYP metabolites from arteriolar EC evoke SMC hyperpolarization that contributes substantively to conducted vasodilation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 693-693
Author(s):  
Katherine L. Hill ◽  
Petra Obrtlikova ◽  
Diego F Alvarez ◽  
Judy A King ◽  
Qinglu Li ◽  
...  

Abstract The field of vascular regenerative medicine is rapidly growing and the demand for cell-based therapy is high. In our studies, human embryonic stem cells (hESCs) were differentiated via coculture with M2-10B4 mouse bone marrow derived stromal cells for 13–15 days. At this time, CD34+ were isolated using an immunomagnetic separation technique and further phenotyped. As shown by flow cytometric analysis, the population co-expressed typical endothelial cell surface antigens such as CD31 and Flk. Upon culture of these CD34+ cells in endothelial culture medium containing VEGF, bFGF, IGF-1, EGF, and heparin, the cells assumed a endothelial cell morphology, formed vascular like networks when placed in Matrigel, and expressed CD31, Flk1, CD146, Tie2, eNOS, vWF, and VE-cadherin (each confirmed by quantitative real time PCR, immunohistochemistry, and flow cytometry). Transmission electron micrograph images of these cells, termed hESC-ECs, showed a defined cortical filamentous rim as seen in other endothelial cells and a significant number of micro-particles being released from the cell surface. Additionally, permeability studies revealed these cells exhibit trans-electrical resistance of 1200Ω, consistent with basal barrier properties exhibited by conduit endothelial cells. These hESC-ECs also proved capable of further differentiation into smooth muscle cells, hESCSMCs. When culture conditions were changed to support SMC growth (DMEM + PDGFBB and TGF-β1), cells assumed SMC morphology including intracellular fibrils, down regulated endothelial gene transcript and protein expression, and began to express α-SMC actin, calponin, SM22, smoothelin, myocardin. Also, concomitant increases in expression of APEG-1 and CRP2/SmLIM, expressed preferentially by arterial SMCs, was found. In contrast, HUVECs placed under these SMC conditions did not display SMC characteristics. Additional studies evaluated intracellular calcium release in hESC-ECs and hESC-SMCs subjected to various pharmacological agonists. The hESC-SMC population preferentially responded to bradykinin, oxytocin, endothelin-1, histamine, and ATP, while hESC-ECs responsed to endothelin-1, histamine, bradykinin, and carbachol. Functional studies were initially done by in vitro culture of these cell populations in Matrigel. hESC-SMCs placed in Matrigel alone did not form a vascular like network. However, an improved vascular structure was seen when hESC-ECs were placed in Matrigel along with hESC-SMCs. Together, these cells formed a dense, more robust vascular network composed of thicker tube structures, indicating a more physiologically relevant model of vasculogenesis. Next in vivo studies have been initiated utilizing a mouse myocardial infarct model. NOD/SCID mice were anesthetized and subjected to ligation of the left anterior descending artery. By assessing cardiac function 3 weeks post infarction, we found that mice receiving an hESC-EC injection (1×106 cells directly into infarction sight) showed greater vascular repair and increased ejection fraction when compared to mice that did not receive an hESCEC injection [untreated control ejection fraction= 14.3% vs hESC-EC treated= 21.3%]. Currently, studies are underway evaluating combined use of hESC-ECs and hESC-SMCs in this infarct model, as we hypothesize that combined use of these cells will be more beneficial for vascular development and repair than either one population alone. Together, the phenotypic and functional studies of these hESC-derived CD34+ cells suggest these cells can act as pericytes with dual endothelial cell and SMC developmental potential and these hESC-derived pericytes can provide an important resource for developing novel cellular therapies for vascular repair.


1999 ◽  
pp. 1106-1109 ◽  
Author(s):  
HEUNG JAE PARK ◽  
JAMES J. YOO ◽  
RICHARD T. KERSHEN ◽  
ROBERT MORELAND ◽  
ANTHONY ATALA

1999 ◽  
Vol 162 (3 Part 2) ◽  
pp. 1106-1109 ◽  
Author(s):  
HEUNG JAE PARK ◽  
JAMES J. YOO ◽  
RICHARD T. KERSHEN ◽  
ROBERT MORELAND ◽  
ANTHONY ATALA

2000 ◽  
Author(s):  
L. E. Niklason ◽  
T. V. DuLaney ◽  
A. K. Moats ◽  
S. Mitchell ◽  
V. Prabhakar

Abstract Because of the tremendous clinical need for small caliber (&lt; 6 mm diameter) arterial replacements, multiple approaches have been developed to culture biological arterial grafts both in vivo and in vitro. We have developed an approach that utilizes autologous smooth muscle and endothelial cells that are expanded in culture and then seeded onto rapidly degrading polyglycolic acid (PGA) scaffolds. The seeded tubular scaffolds are cultured under conditions of pulsatile radial stress to simulate the native hemodynamic environment. However, the effects of the type of culture scaffold on the phenotype and properties of tissue engineered vessels has not been investigated.


Author(s):  
Luca Cardamone ◽  
Arturo Valentin ◽  
Jay D. Humphrey

Vascular smooth muscle cells (SMC), endothelial cells (EC), and fibroblasts exist in a dynamic mechanical environment and can sense and respond to mechanical stimuli in vivo (McKnight and Frangos [1]). It is becoming more and more clear that complex dynamics not only influences vascular tone but also SMC proliferation (see Dancu et al. [2]) and extracellular matrix turnover (Cummins et al. [3]) by stimulating cell activity.


Sign in / Sign up

Export Citation Format

Share Document