CD44 Potentiates the Adherence of Metastatic Prostate and Breast Cancer Cells to Bone Marrow Endothelial Cells

2005 ◽  
Vol 173 (3) ◽  
pp. 1045-1045 ◽  
Author(s):  
Timothy L. Ratliff
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1269-1269
Author(s):  
Haiming Chen ◽  
Richard A. Campbell ◽  
Mingjie Li ◽  
Melinda S. Gordon ◽  
Dror Shalitin ◽  
...  

Abstract We have previously shown that multiple myeloma (MM) patients express pleiotrophin (PTN) and it is found at high levels in MM serum as well as PTN is a key factor in the transdifferentiation of monocytes into endothelial cells. We determined the level of PTN expression in myeloma and breast cancer and determined whether PTN produced by these tumor cells could induce endothelial cell expression in human monocytes. Both myeloma and breast cancer cells produced high levels of PTN and secreted this growth factor into the culture medium whereas normal bone marrow showed no expression of this protein. Next, MM cell lines, human bone marrow (BM) from MM patients or control subjects or breast cancer cells were cultured with CD14+ PBMCs using transwell culture plates coated with collagen I. CD14+ monocytes exposed to cells from MM cell lines or fresh BM or breast cancer cells showed expression of endothelial genes (Flk-1, Tie-2, CD144, and vWF) and lost expression of monocyte genes (c-fms). Induction of endothelial gene expression was blocked with an anti-PTN antibody. In contrast, CD14+ cells exposed to normal bone marrow as well as cell lines lacking PTN expression did not show endothelial gene expression. We determined whether human monocytes could be incorporated in vivo as vascular endothelium within human tumors that express PTN. Human myeloma LAGλ-1 cells which highly express and secrete PTN were mixed with THP1 monocytes transduced with the green fluorescent protein (GFP) gene and injected subcutaneously into SCID mice. Mice were sacrificed 6 weeks later and tumor was fixed and frozen sections. MM cells or THP1 monocytes alone did not demonstrate the presence of GFP+ blood vessels. Notably, GFP+ THP1 cells were found in blood vessels within the PTN-expressing LAGλ-1 tumor in animals injected with both cells together. When GFP+h2Kd- blood vessels were stained for anti-human and anti-mouse CD31, 60% of the endothelial cells stained positive for human CD31 and the remaining cells stained positive for mouse CD31 whereas none of these cells stained positive for both mouse and human markers. These results show that the blood vessels containing GFP+ cells do not result from fused cells. In addition, an anti-PTN antibody but not control IgG antibody blocks the incorporation of GFP+ cells into the vasculature of the LAGλ-1 tumors. Staining of serial sections with anti-Tie-2 and CD31 antibodies showed a similar distribution pattern. We further examined endothelial gene expression in these in vivo-generated samples using RT-PCR. The results showed that the THP1 monocytes or LAGλ-1 tumor cells alone did not express endothelial genes whereas THP1 monocytes mixed with PTN-expressing LAGλ-1 showed endothelial gene expression. This endothelial gene expression was blocked by anti-PTN antibody. These data show that hematologic and solid tumors through expression of PTN support new blood vessel formation by the transdifferentiation of monocytes into endothelial cells and provide a new potential target for inhibiting blood vessel formation in solid and liquid tumors.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1299-1299
Author(s):  
Joana G. Brandao ◽  
Joao T. Barata ◽  
Raquel Nunes ◽  
Lee M. Nadler ◽  
Angelo A. Cardoso

Abstract The presence of breast cancer cells in the patient’s bone marrow (BM) at diagnosis is associated with resistance to treatment, disease relapse and poor prognosis. Identification of the factors implicated in the homing, survival and latency of breast cancer cells in the BM should contribute to the design of more efficient therapeutic strategies for breast cancer. There is evidence that breast cancer can recruit endothelial progenitors from the BM. Also, other epithelial tumors seem to preferentially adhere to BM endothelial cells. Therefore, we hypothesized that BM endothelium may play a significant role in the biology of breast cancer cells residing in the BM. Co-cultures in Matrigel showed that breast cancer cells interact with BM endothelium to form heterotypic multicellular networks. Moreover, breast cancer cells migrate towards BM endothelium assembled as capillary-like structures, but not to structures of BM mesenchymal stem cells or BM stroma. This migration was abrogated by pertussis toxin-mediated blockade of chemokine receptor signaling, suggesting the involvement of endothelium-secreted chemokine(s). We then evaluated the impact of breast cancer cells in the survival and proliferation of BM endothelium. All breast cancer lines tested (n=4) promoted the proliferation of BM-derived endothelial cells. This effect is mediated through the engagement of the PI3K/Akt pathway (phosphorylation of Akt at Ser437 and Thr308, and activation of its downstream substrates GSK3β, PRAS-40 and FKHRL1) since its specific blockade abrogated the stimulatory effects of breast cancer on BM endothelium. We next determined whether, reciprocally, BM endothelium impacts on breast cancer cell survival. These experiments were performed in serum-free media to enhance dependency of breast cancer cells from microenvironmental stimuli. In all cases tested, BM endothelium promoted survival/proliferation of breast cancer cells. This stimulation was accompanied by the engagement of the PI3K/Akt pathway in breast cancer cells and, in three of the four lines, the phosphorylation of Erk1/2. These effects were also observed for breast cancer cells that showed constitutive activation of Akt (MCF-7 and ZR-75-1 cells). Specific blockade of PI3K/Akt abrogated the BM endothelium-promoted survival of breast cancer cells, thus demonstrating the critical role of this pathway. These studies show that crosstalk between BM endothelial cells and breast cancer cells may impact on the survival of both cell types. These findings provide new light on the mechanisms that may facilitate the development of a tumor-permissive BM microenvironment in breast cancer, and the creation of breast cancer-supporting BM niches. Importantly, this study implicates BM endothelium as a therapeutic target in breast cancer and suggest that blockade of PI3K/Akt may impact the outcome of patients with metastatic breast cancer.


Oncogene ◽  
2006 ◽  
Vol 25 (45) ◽  
pp. 6079-6091 ◽  
Author(s):  
A Hill ◽  
S McFarlane ◽  
K Mulligan ◽  
H Gillespie ◽  
J E Draffin ◽  
...  

2004 ◽  
Vol 64 (16) ◽  
pp. 5702-5711 ◽  
Author(s):  
Jayne E. Draffin ◽  
Suzanne McFarlane ◽  
Ashleigh Hill ◽  
Patrick G. Johnston ◽  
David J. J. Waugh

2022 ◽  
Vol 12 (2) ◽  
pp. 273-278
Author(s):  
Daqing Jiang ◽  
Xianxin Xie ◽  
Cong Wang ◽  
Weijie Li ◽  
Jianjun He

Our study intends to assess the relationship between exosomes derived from bone marrow mesenchymal stem cells (BMSC-exo) and breast cancer. BMSC-exo were isolated and characterized by transmission electron microscopy. After transfection of BMSCs with miR-204 inhibitor, breast cancer cells were incubated with BMSC-exo followed by analysis of cell proliferation by CCK-8 assay, cell apoptosis by flow cytometry, and expression of apoptosis-related protein and NF-κB signaling by western blot. The co-culture of BMSC-exo with breast cancer cells enhanced miR-204 transcription, inhibited cell proliferation and induced apoptosis. Further, BMSC-exo accelerated apoptosis as demonstrated by the increased level of Bax and casepase-3 and decreased Bcl-2 expression, as well as reduced NF-κB signaling activity. But knockdown of miR-204 abolished the effect of BMSC-exo on apoptosis and proliferation with NF-κB signaling activation. In conclusion, miR-204 from BMSC-exo restrains growth of breast cancer cell and might be a novel target for treating breast cancer.


2019 ◽  
Vol 123 ◽  
pp. 399-411 ◽  
Author(s):  
Mozhgan Jahani ◽  
Mehri Azadbakht ◽  
Hassan Rasouli ◽  
Reza Yarani ◽  
Davood Rezazadeh ◽  
...  

2020 ◽  
Author(s):  
Kenneth F. Fuh ◽  
Robert D. Shepherd ◽  
Jessica S. Withell ◽  
Brayden K. Kooistra ◽  
Kristina D Rinker

Abstract Background: Fluid forces are an integral part of the tumor microenvironment through all phases of development and progression. However, it is not well understood how these forces affect key steps in the progression of breast cancer of Epithelial-to-Mesenchymal Transition (EMT) and adhesion to vascular wall endothelial cells. EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells.Methods: MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system. Changes in gene expression were quantified using microarrays and qPCR, gene-gene interactions were elucidated using network analysis, and key modified genes were examined in clinical datasets. Changes in protein expression of key EMT markers between chemically induced EMT and flow-exposed cells were compared in immunocytochemistry assays. Finally, the ability of flow-stimulated and unstimulated cancer cells to adhere to an endothelial monolayer was evaluated in flow and static adhesion experiments.Results: Fluid flow stimulation resulted in upregulation of EMT inducers and downregulation of repressors. Specifically, Vimentin and Snail were upregulated both at the gene and protein expression levels in flow stimulated HMECs, suggesting progression towards an EMT phenotype. Flow-induced overexpression of a panel of cell adhesion genes was also observed. Network analysis revealed genes involved in cell flow responses including FN1, PLAU, and ALCAM. When evaluated in clinical datasets, overexpression of FN1, PLAU, and ALCAM was observed in patients with most subtypes of breast cancer. We also observed increased adhesion of flow-stimulated breast cancer cells compared to unstimulated controls, suggesting an increased potential to form secondary tumors at metastatic sites. Conclusions: This study shows that prolonged fluid force exposure on the order of 1 Pa promotes EMT and adhesion of breast cancer cells to an endothelial monolayer. Further, identified biomarkers were distinctly expressed in patient populations. A better understanding of how biophysical forces such as shear stress affect cellular processes involved in metastatic progression of breast cancer is important for identifying new molecular markers for disease progression, and for predicting metastatic risk.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3245-3252 ◽  
Author(s):  
Anabella L. Moharita ◽  
Marcelo Taborga ◽  
Kelly E. Corcoran ◽  
Margarette Bryan ◽  
Prem S. Patel ◽  
...  

Abstract Breast cancer cells (BCCs) show preference for the bone marrow (BM). An animal model showed 2 populations of BCCs in the BM with regard to their cycling states. An in vitro model of early BC entry into BM showed normal hematopoiesis. Here, we show a critical role for BCC-derived SDF-1α in hematopoietic regulation. The studies used a coculture of BM stroma and BCCs (cell lines and stage II BCCs). Northern blots and enzyme-linked immunosorbent assay (ELISA) showed gradual decreases in SDF-1α production in BCCs as they contact BM stroma, indicating partial microenvironmental effects caused by stroma on the BCCs. SDF-1 knock-down BCCs and increased exogenous SDF-1α prevented contact inhibition between BCCs and BM stroma. Contact inhibition was restored with low SDF-1α levels. Long-term culture-initiating assays with CD34+/CD38–/Lin– showed normal hematopoiesis provided that SDF-1α levels were reduced in BCCs. Gap junctions (connexin-43 [CX-43]) were formed between BCCs and BM stroma, with concomitant interaction between CD34+/CD38–/Lin– and BM stroma but not with the neighboring BCCs. In summary, SDF-1α levels are reduced in BCCs that contact BM stroma. The low levels of SDF-1α in BCCs regulate interactions between BM stroma and hematopoietic progenitors, consequently facilitating normal hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document