Synthesis of silicon carbide whiskers from rice husk and coconut shell

1999 ◽  
Vol 54 (3) ◽  
pp. 39
2020 ◽  
Vol 54 (29) ◽  
pp. 4611-4620 ◽  
Author(s):  
Akm Samsur Rahman ◽  
Chirag Shah ◽  
Nikhil Gupta

The current research is focused on developing a geopolymer binder using rice husk ash–derived silica nanoparticles. Four types of rice husks were collected directly from various rice fields of Bangladesh in order to evaluate the pozzolanic activity and compatibility of the derived rice husk ashes with precursors of sodium-based geopolymers. Silicon carbide whiskers were introduced into sodium-based geopolymers in order to evaluate the response of silicon carbide whiskers to the interfacial bonding and strength of sodium-based geopolymers along with rice husk ashes. Compression, flexural and short beam shear tests were performed to investigate the synergistic effect of rice husk ashes–derived silica and commercially available silicon carbide whiskers. Results show that rice husk ashes–derived spherical silica nanoparticles reduced nano-porosity of the geopolymers by ∼20% and doubled the compressive strength. The simultaneous additions of rice husk ashes and silicon carbide whiskers resulted in flexural strength improvement by ∼27% and ∼97%, respectively. The increase in compressive strength due to the inclusion of silica nanoparticles is related to the reduction in porosity. The increase in flexural strength due to simultaneous inclusion of silica and silicon carbide whiskers suggest that silica particles are compatible with the metakaolin-based geopolymers, which is effective in consolidation. Finally, microscopy suggest that silicon carbide whiskers are effective in increasing bridged network and crack resistance.


1991 ◽  
Vol 10 (4) ◽  
pp. 227-229 ◽  
Author(s):  
Ajoy Kumar Ray ◽  
Gyananjan Mahanty ◽  
Ambar Ghose

1987 ◽  
Vol 9 (4) ◽  
pp. 295-303 ◽  
Author(s):  
B V Radhakrishna Bhat ◽  
G P Sanghi

2019 ◽  
Vol 7 (23) ◽  
pp. 19027-19033 ◽  
Author(s):  
Jingpeng Chen ◽  
Qingqiang Kong ◽  
Zhuo Liu ◽  
Zhihong Bi ◽  
Hui Jia ◽  
...  

Author(s):  
Junfeng Liu ◽  
Xiuqing Gao ◽  
Xiaosu Wu ◽  
Ziyang Zhang ◽  
Xiaoran Zhang

2021 ◽  
Vol 13 (4) ◽  
pp. 2027
Author(s):  
Md. Emdadul Hoque ◽  
Fazlur Rashid ◽  
Muhammad Aziz

Synthetic gas generated from the gasification of biomass feedstocks is one of the clean and sustainable energy sources. In this work, a fixed-bed downdraft gasifier was used to perform the gasification on a lab-scale of rice husk, sawdust, and coconut shell. The aim of this work is to find and compare the synthetic gas generation characteristics and prospects of sawdust and coconut shell with rice husk. A temperature range of 650–900 °C was used to conduct gasification of these three biomass feedstocks. The feed rate of rice husk, sawdust, and coconut shell was 3–5 kg/h, while the airflow rate was 2–3 m3/h. Experimental results show that the highest generated quantity of methane (vol.%) in synthetic gas was achieved by using coconut shell than sawdust and rice husk. It also shows that hydrogen production was higher in the gasification of coconut shell than sawdust and rice husk. In addition, emission generations in coconut shell gasification are lower than rice husk although emissions of rice husk gasification are even lower than fossil fuel. Rice husk, sawdust, and coconut shell are cost-effective biomass sources in Bangladesh. Therefore, the outcomes of this paper can be used to provide clean and economic energy sources for the near future.


2019 ◽  
Vol 9 (20) ◽  
pp. 4388 ◽  
Author(s):  
Artyom Plyushch ◽  
Jan Macutkevič ◽  
Polina Kuzhir ◽  
Aliaksei Sokal ◽  
Konstantin Lapko ◽  
...  

Hybrid composite materials based on an aluminium phosphate matrix with silicon carbide whiskers and multi-walled carbon nanotubes were studied in a wide frequency range (20 Hz to 36 GHz). It was demonstrated, that the addition of the silicon carbide whiskers enhances the dielectric permittivity and conductivity. This was explained by the difference in tunnelling parameters. Hybrid ceramics with nanotubes and whiskers also exhibits substantially improved electromagnetic shielding properties. The hybrid ceramics with 10 wt. % silicon carbide whiskers and a 1 mm thick 1.5 wt. % carbon nanotube layer, show higher than 50% absorption of electromagnetic radiation.


2015 ◽  
Vol 41 (10) ◽  
pp. 14359-14366 ◽  
Author(s):  
Qinghu Wang ◽  
Yawei Li ◽  
Shengli Jin ◽  
Shaobai Sang

Sign in / Sign up

Export Citation Format

Share Document