In situ monitoring of thermal transitions in thin polymeric films via optical interferometry

Polymer ◽  
2003 ◽  
Vol 44 (1) ◽  
pp. 251-260 ◽  
Author(s):  
Constantinos D Diakoumakos ◽  
Ioannis Raptis
2021 ◽  
Vol 326 ◽  
pp. 129007
Author(s):  
Zahra Nasri ◽  
Giuliana Bruno ◽  
Sander Bekeschus ◽  
Klaus-Dieter Weltmann ◽  
Thomas von Woedtke ◽  
...  

2021 ◽  
pp. 2105799
Author(s):  
Yu Zhang ◽  
Li Yang ◽  
Jintao Wang ◽  
Wangying Xu ◽  
Qiming Zeng ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tammy Chang ◽  
Saptarshi Mukherjee ◽  
Nicholas N. Watkins ◽  
David M. Stobbe ◽  
Owen Mays ◽  
...  

AbstractThis article presents a millimeter-wave diagnostic for the in-situ monitoring of liquid metal jetting additive manufacturing systems. The diagnostic leverages a T-junction waveguide device to monitor impedance changes due to jetted metal droplets in real time. An analytical formulation for the time-domain T-junction operation is presented and supported with a quasi-static full-wave electromagnetic simulation model. The approach is evaluated experimentally with metallic spheres of known diameters ranging from 0.79 to 3.18 mm. It is then demonstrated in a custom drop-on-demand liquid metal jetting system where effective droplet diameters ranging from 0.8 to 1.6 mm are detected. Experimental results demonstrate that this approach can provide information about droplet size, timing, and motion by monitoring a single parameter, the reflection coefficient amplitude at the input port. These results show the promise of the impedance diagnostic as a reliable in-situ characterization method for metal droplets in an advanced manufacturing system.


Sign in / Sign up

Export Citation Format

Share Document