Chapter 2 Various Boundary-Value Problems for the Homogeneous Wave Equation in E2

2019 ◽  
Vol 484 (1) ◽  
pp. 18-20
Author(s):  
A. P. Khromov ◽  
V. V. Kornev

This study follows A.N. Krylov’s recommendations on accelerating the convergence of the Fourier series, to obtain explicit expressions of the classical mixed problem–solution for a non-homogeneous equation and explicit expressions of the generalized solution in the case of arbitrary summable functions q(x), ϕ(x), y(x), f(x, t).


2020 ◽  
Vol 13 (4) ◽  
pp. 425-436 ◽  
Author(s):  
Gianni Dal Maso ◽  
Lucia De Luca

AbstractWe prove the existence of weak solutions to the homogeneous wave equation on a suitable class of time-dependent domains. Using the approach suggested by De Giorgi and developed by Serra and Tilli, such solutions are approximated by minimizers of suitable functionals in space-time.


Author(s):  
John F. Ahner ◽  
John S. Lowndes

AbstractAlgorithms are developed by means of which certain connected pairs of Fredholm integral equations of the first and second kinds can be converted into Fredholm integral equations of the second kind. The methods are then used to obtain the solutions of two different sets of triple integral equations tht occur in mixed boundary value problems involving Laplace' equation and the wave equation respectively.


Sign in / Sign up

Export Citation Format

Share Document