[12] Molecular motors and single-molecule enzymology

Author(s):  
Yoshiharu Ishii ◽  
Kazuo Kitamura ◽  
Hiroto Tanaka ◽  
Toshio Yanagida
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ping Xie

AbstractKinesin-8 molecular motor can move with superprocessivity on microtubules towards the plus end by hydrolyzing ATP molecules, depolymerizing microtubules. The available single molecule data for yeast kinesin-8 (Kip3) motor showed that its superprocessive movement is frequently interrupted by brief stick–slip motion. Here, a model is presented for the chemomechanical coupling of the kinesin-8 motor. On the basis of the model, the dynamics of Kip3 motor is studied analytically. The analytical results reproduce quantitatively the available single molecule data on velocity without including the slip and that with including the slip versus external load at saturating ATP as well as slipping velocity versus external load at saturating ADP and no ATP. Predicted results on load dependence of stepping ratio at saturating ATP and load dependence of velocity at non-saturating ATP are provided. Similarities and differences between dynamics of kinesin-8 and that of kinesin-1 are discussed.


Author(s):  
Maria Dienerowitz ◽  
Jamieson A.L. Howard ◽  
Steven D. Quinn ◽  
Frank Dienerowitz ◽  
Mark C. Leake

Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


2018 ◽  
Vol 115 (38) ◽  
pp. 9405-9413 ◽  
Author(s):  
R. Dean Astumian

Recent developments in synthetic molecular motors and pumps have sprung from a remarkable confluence of experiment and theory. Synthetic accomplishments have facilitated the ability to design and create molecules, many of them featuring mechanically bonded components, to carry out specific functions in their environment—walking along a polymeric track, unidirectional circling of one ring about another, synthesizing stereoisomers according to an external protocol, or pumping rings onto a long rod-like molecule to form and maintain high-energy, complex, nonequilibrium structures from simpler antecedents. Progress in the theory of nanoscale stochastic thermodynamics, specifically the generalization and extension of the principle of microscopic reversibility to the single-molecule regime, has enhanced the understanding of the design requirements for achieving strong unidirectional motion and high efficiency of these synthetic molecular machines for harnessing energy from external fluctuations to carry out mechanical and/or chemical functions in their environment. A key insight is that the interaction between the fluctuations and the transition state energies plays a central role in determining the steady-state concentrations. Kinetic asymmetry, a requirement for stochastic adaptation, occurs when there is an imbalance in the effect of the fluctuations on the forward and reverse rate constants. Because of strong viscosity, the motions of the machine can be viewed as mechanical equilibrium processes where mechanical resonances are simply impossible but where the probability distributions for the state occupancies and trajectories are very different from those that would be expected at thermodynamic equilibrium.


2011 ◽  
Vol 100 (3) ◽  
pp. 193a
Author(s):  
Abhinav Nath ◽  
William M. Atkins ◽  
Andrew D. Miranker ◽  
Elizabeth Rhoades

FEBS Journal ◽  
2014 ◽  
Vol 281 (2) ◽  
pp. 518-530 ◽  
Author(s):  
Ramon Grima ◽  
Nils G. Walter ◽  
Santiago Schnell

Sign in / Sign up

Export Citation Format

Share Document