[30] Video-rate, scanning slit confocal microscopy of living human cornea in vivo: Three-dimensional confocal microscopy of the eye

Author(s):  
Barry R. Masters ◽  
Matthias Böhnke
2001 ◽  
Vol 33 (3) ◽  
pp. 125-135 ◽  
Author(s):  
Barry R. Masters ◽  
Matthias Böhnke

1991 ◽  
Vol 112 (3) ◽  
pp. 385-395 ◽  
Author(s):  
R M Lynch ◽  
K E Fogarty ◽  
F S Fay

Hexokinase isozyme I is proposed to be associated with mitochondria in vivo. Moreover, it has been suggested that this association is modulated in coordination with changes in cell metabolic state. To test these hypotheses, we analyzed the subcellular distribution of hexokinase relative to mitochondria in paraformaldehyde-fixed astrocytes using immunocytochemistry and quantitative three-dimensional confocal microscopy. Analysis of the extent of colocalization between hexokinase and mitochondria revealed that approximately 70% of cellular hexokinase is associated with mitochondria under basal metabolic conditions. In contrast to the immunocytochemical studies, between 15 to 40% of cellular hexokinase was found to be associated with mitochondria after fractionation of astrocyte cultures depending on the exact fractionation conditions. The discrepancy between fractionation studies and those based on imaging of distributions in fixed cells indicates the usefulness of using techniques that can evaluate the distributions of "cytosolic" enzymes in cells whose subcellular ultrastructure is not severely disrupted. To determine if hexokinase distribution is modulated in concert with changes in cell metabolism, the localization of hexokinase with mitochondria was evaluated after inhibition of glucose metabolism with 2-deoxyglucose. After incubation with 2-deoxyglucose there was an approximate 35% decrease in the amount of hexokinase associated with mitochondria. These findings support the hypothesis that hexokinase is bound to mitochondria in rat brain astrocytes in vivo, and that this association is sensitive to cell metabolic state.


Author(s):  
W. Matthew Petroll ◽  
Timmy Kovoor ◽  
Patrick M. Ladage ◽  
H. Dwight Cavanagh ◽  
James V. Jester ◽  
...  

2002 ◽  
Vol 30 (3) ◽  
pp. 187-190 ◽  
Author(s):  
Christina N Grupcheva ◽  
Tracey Wong ◽  
Andrew F Riley ◽  
Charles NJ McGhee

2019 ◽  
Vol 65 (3) ◽  
pp. 174-183
Author(s):  
Natalya G. Mokrysheva ◽  
Sergey L. Kiselev ◽  
Natalia V. Klementieva ◽  
Anna M. Gorbacheva ◽  
Ivan I. Dedov

Confocal microscopy is a modern imaging method that provides ample opportunities for in vitro and in vivo research. The clinical part of the review focuses on well-established techniques, such as corneal confocal microscopy for the diagnosis of diabetic neuropathy or endocrine ophthalmopathy; new methods are briefly described (intraoperative evaluation of tissues obtained by removing pituitary adenomas, thyroid and parathyroid glands). In the part devoted to fundamental research, the use of confocal microscopy to characterize the colocalization of proteins, as well as three-dimensional intracellular structures and signaling pathways in vivo, is considered. Indicators of intracellular calcium are analyzed.


2006 ◽  
Vol 142 (5) ◽  
pp. 736-744.e2 ◽  
Author(s):  
Leonardo Mastropasqua ◽  
Mario Nubile ◽  
Manuela Lanzini ◽  
Paolo Carpineto ◽  
Marco Ciancaglini ◽  
...  

2008 ◽  
Vol 52 (6) ◽  
pp. 493-496 ◽  
Author(s):  
Tatsuya Mimura ◽  
Satoru Yamagami ◽  
Tomohiko Usui ◽  
Norihiko Honda ◽  
Fumiyuki Araki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document