Low dose daily rhGM–CSF application activates monocytes and dendritic cells in vivo

2003 ◽  
Vol 27 (12) ◽  
pp. 1105-1108 ◽  
Author(s):  
Gokhan Demir ◽  
Hans Otto Klein ◽  
Nukhet Tuzuner
Keyword(s):  
Author(s):  
M. Christofi ◽  
S. Le Sommer ◽  
C. Mölzer ◽  
I. P. Klaska ◽  
L. Kuffova ◽  
...  

Abstract Cell therapies for autoimmune diseases using tolerogenic dendritic cells (tolDC) have been promisingly explored. A major stumbling block has been generating stable tolDC, with low risk of converting to mature immunogenic DC (mDC), exacerbating disease. mDC induction involves a metabolic shift to lactate production from oxidative phosphorylation (OXPHOS) and β-oxidation, the homeostatic energy source for resting DC. Inhibition of glycolysis through the administration of 2-deoxy glucose (2-DG) has been shown to prevent autoimmune disease experimentally but is not clinically feasible. We show here that treatment of mouse bone marrow-derived tolDC ex vivo with low-dose 2-DG (2.5 mM) (2-DGtolDC) induces a stable tolerogenic phenotype demonstrated by their failure to engage lactate production when challenged with mycobacterial antigen (Mtb). ~ 15% of 2-DGtolDC express low levels of MHC class II and 30% express CD86, while they are negative for CD40. 2-DGtolDC also express increased immune checkpoint molecules PDL-1 and SIRP-1α. Antigen-specific T cell proliferation is reduced in response to 2-DGtolDC in vitro. Mtb-stimulated 2-DGtolDC do not engage aerobic glycolysis but respond to challenge via increased OXPHOS. They also have decreased levels of p65 phosphorylation, with increased phosphorylation of the non-canonical p100 pathway. A stable tolDC phenotype is associated with sustained SIRP-1α phosphorylation and p85-AKT and PI3K signalling inhibition. Further, 2-DGtolDC preferentially secrete IL-10 rather than IL-12 upon Mtb-stimulation. Importantly, a single subcutaneous administration of 2-DGtolDC prevented experimental autoimmune uveoretinitis (EAU) in vivo. Inhibiting glycolysis of autologous tolDC prior to transfer may be a useful approach to providing stable tolDC therapy for autoimmune/immune-mediated diseases.


2001 ◽  
Vol 86 (11) ◽  
pp. 1257-1263 ◽  
Author(s):  
Attilio Bondanza ◽  
Angelo Manfredi ◽  
Valérie Zimmermann ◽  
Matteo Iannacone ◽  
Angela Tincani ◽  
...  

SummaryScavenger phagocytes are mostly responsible for the in vivo clearance of activated or senescent platelets. In contrast to other particulate substrates, the phagocytosis of platelets does not incite pro-inflammatory responses in vivo. This study assessed the contribution of macrophages and dendritic cells (DCs) to the clearance of activated platelets. Furthermore, we verified whether antibodies against the β2 Glycoprotein I (β2GPI), which bind to activated platelets, influence the phenomenon. DCs did not per se internalise activated platelets. In contrast, macrophages efficiently phagocytosed platelets. In agreement with the uneventful nature of the clearance of platelets in vivo, phagocytosing macrophages did not release IL-1β, TNF-α or IL-10. β2GPI bound to activated platelets and was required for their recognition by anti-ββ2GPI antibodies. DCs internalised platelets opsonised by anti-ββ2GPI antibodies. The phagocytosis of opsonised platelets determined the release of TNF-α and IL-1β by DCs and macrophages. Phagocytosing macrophages, but not DCs, secreted the antiinflammatory cytokine IL-1β0. We conclude that anti-ββ2GPI antibodies cause inflammation during platelet clearance and shuttle platelet antigens to antigen presenting DCs.


1987 ◽  
Vol 57 (01) ◽  
pp. 062-066 ◽  
Author(s):  
P A Kyrle ◽  
J Westwick ◽  
M F Scully ◽  
V V Kakkar ◽  
G P Lewis

SummaryIn 7 healthy volunteers, formation of thrombin (represented by fibrinopeptide A (FPA) generation, α-granule release (represented by β-thromboglobulin [βTG] release) and the generation of thromboxane B2 (TxB2) were measured in vivo in blood emerging from a template bleeding time incision. At the site of plug formation, considerable platelet activation and thrombin generation were seen within the first minute, as indicated by a 110-fold, 50-fold and 30-fold increase of FPA, TxB2 and PTG over the corresponding plasma values. After a further increase of the markers in the subsequent 3 minutes, they reached a plateau during the fourth and fifth minute. A low-dose aspirin regimen (0.42 mg.kg-1.day-1 for 7 days) caused >90% inhibition of TxB2formation in both bleeding time blood and clotted blood. At the site of plug formation, a-granule release was substantially reduced within the first three minutes and thrombin generation was similarly inhibited. We conclude that (a) marked platelet activation and considerable thrombin generation occur in the early stages.of haemostasis, (b) α-granule release in vivo is partially dependent upon cyclo-oxygenase-controlled mechanisms and (c) thrombin generation at the site of plug formation is promoted by the activation of platelets.


1995 ◽  
Vol 74 (05) ◽  
pp. 1225-1230 ◽  
Author(s):  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Raffaele Tartaglione ◽  
Sergio Cortelazzo ◽  
Tiziano Barbui ◽  
...  

SummaryIn order to investigate the in vivo thromboxane (TX) biosynthesis in essential thromboeythemia (ET), we measured the urinary exeretion of the major enzymatic metabolites of TXB2, 11-dehydro-TXB2 and 2,3-dinor-TXB2 in 40 ET patients as well as in 26 gender- and age-matched controls. Urinary 11-dehydro-TXB2 was significantly higher (p <0.001) in thrombocythemic patients (4,063 ± 3,408 pg/mg creatinine; mean ± SD) than in controls (504 ± 267 pg/mg creatinine), with 34 patients (85%) having 11-dehydro-TXB2 >2 SD above the control mean. Patients with platelet number <1,000 × 109/1 (n = 25) had significantly higher (p <0.05) 11 -dehydro-TXB2 excretion than patients with higher platelet count (4,765 ± 3,870 pg/mg creatinine, n = 25, versus 2,279 ± 1,874 pg/mg creatinine, n = 15). Average excretion values of patients aging >55 was significantly higher than in the younger group (4,784 ± 3,948 pg/mg creatinine, n = 24, versus 2,405 ± 1,885 pg/mg creatinine, n = 16, p <0.05). Low-dose aspirin (50 mg/d for 7 days) largely suppressed 11-dehydro-TXB2 excretion in 7 thrombocythemic patients, thus suggesting that platelets were the main source of enhanced TXA2 biosynthesis. The platelet count-corrected 11-dehydro-TXB2 excretion was positively correlated with age (r = 0.325, n = 40, p <0.05) and inversely correlated with platelet count (r = -0.381, n = 40, p <0.05). In addition 11 out of 13 (85%) patients having increased count-corrected 11-dehydro-TXB2 excretion, belonged to the subgroup with age >55 and platelet count <1,000 × 1099/1. We conclude that in essential thrombocythemia: 1) enhanced 11-dehydro-TXB2 excretion largely reflects platelet activation in vivo;2) age as well as platelet count appear to influence the determinants of platelet activation in this setting, and can help in assessing the thrombotic risk and therapeutic strategy in individual patients.


1986 ◽  
Vol 113 (1_Suppl) ◽  
pp. S120-S121
Author(s):  
TH. LINN ◽  
H. GERMANN ◽  
B. HERING ◽  
R. BRETZEL ◽  
K. FEDERLIN

Sign in / Sign up

Export Citation Format

Share Document