An erosion-mechanical model for sand production rate prediction

1998 ◽  
Vol 35 (4-5) ◽  
pp. 531-532 ◽  
Author(s):  
E. Papamichos ◽  
M. Stavropoulou
2018 ◽  
Vol 876 ◽  
pp. 181-186
Author(s):  
Son Tung Pham

Sand production is a complicated physical process depending on rock mechanical properties and flow of fluid in the reservoir. When it comes to sand production phenomenon, many researchers applied the Geomechanical model to predict the pressure for the onset of sand production in the reservoir. However, the mass of produced sand is difficult to determine due to the complexity of rock behavior as well as fluid behavior in porous media. In order to solve this problem, there are some Hydro – Mechanical models that can evaluate sand production rate. As these models require input parameters obtained by core analysis and use a large empirical correlation, they are still not used popularly because of the diversity of reservoirs behavior in the world. In addition, the reliability of these models is still in question because no comparison between these empirical models has been studied. The onset of sand production is estimated using the bottomhole pressure that makes the maximum effective tangential compressive stress equal or higher than the rock strength (failure criteria), which is usually known as critical bottomhole pressure (CBHP). Combining with Hydro – Mechanical model, the main objective of this work aims to develop a numerical model that can solve the complexity of the governing equations relating to sand production. The outcome of this study depicts sand production rate versus time as well as the change of porosity versus space and time. In this paper, the Geomechanical model coupled with Hydro – Mechanical model is applied to calibrate the empirical parameters.


2021 ◽  
Vol 18 (4) ◽  
pp. 45-52
Author(s):  
Wenhua Huang ◽  
Yan Huang ◽  
Juan Ren ◽  
Jinglong Jiang ◽  
Marischa Elveny

One of the challenges facing drilling companies in the completion and production of oil and gas wells is sand production from the formation. The ability to predict sand production in the wells of a reservoir, to decide to use different methods of control is considered a fundamental issue. Therefore, analysis and study of sand production conditions and selecting the optimal drilling route before drilling wells are significant issues that are less considered. According to the findings of this study, due to the sand grains adhesion issue, saturation increase has caused to increase in the intermolecular uptake, and therefore moisture has been decreased. It leads to reduction in the sand production rate. Pressure increase has a direct relationship with the sand production rate due to increased induced drag forces. Moreover, phenol–formaldehyde resins provided an acceptable measurement as there are no significant changes in porosity and permeability.


2020 ◽  
Author(s):  
Ndubuisi Okereke ◽  
Vincent Ogbuka ◽  
Nkemakolam Izuwa ◽  
Fuat Kara ◽  
Ngozi Nwogu ◽  
...  

2000 ◽  
Vol 122 (3) ◽  
pp. 115-122 ◽  
Author(s):  
Brenton S. McLaury ◽  
Siamack A. Shirazi

One commonly used method for determining oil and gas production velocities is to limit production rates based on the American Petroleum Institute Recommended Practice 14E (API RP 14E). This guideline contains an equation to calculate an “erosional” or a threshold velocity, presumably a flow velocity that is safe to operate. The equation only considers one factor, the density of the medium, and does not consider many other factors that can contribute to erosion in multiphase flow pipelines. Thus, factors such as fluid properties, flow geometry, type of metal, sand production rate and size distribution, and flow composition are not accounted for. In the present paper, a method is presented that has been developed with the goal of improving the procedure by accounting for many of the physical variables including fluid properties, sand production rate and size, and flowstream composition that affect sand erosion. The results from the model are compared with several experimental results provided in the literature. Additionally, the method is applied to calculate threshold flowstream velocities for sand erosion and the results are compared with API RP 14E. The results indicate that the form of the equation that is provided by the API RP 14E is not suitable for predicting a production flowstream velocity when sand is present. [S0195-0738(00)00203-X]


2021 ◽  
Author(s):  
Catherine, Ye Tang ◽  
Kok Liang Tan ◽  
Latief Riyanto ◽  
Fuziana Tusimin ◽  
Nik Fazril Sapian ◽  
...  

Abstract Well#1 was completed as horizontal oil producer with Openhole Stand-Alone Sandscreens (OHSAS) across a thin reservoir with average thickness of 20ft in Field B. The first Autonomous Inflow Control Device (AICD) in PETRONAS was installed to ensure balanced contribution across horizontal zones with permeability contrasts and to prevent early water and gas breakthrough. Integrated real-time reservoir mapping-while-drilling technology for well placement optimization combined with industry-leading inflow control simulator for AICD placement were opted. The early well tests post drilling showed promising results with production rate doubled the expected rate with no sand production, low water cut and lower Gas to Oil Ratio (GOR). Reservoir Management Plan (RMP) for this oil rim requires continuous gas injection into gas cap and water injection into aquifer. However, due to low gas injection uptime caused by prolonged injection facilities constraints, the well's watercut continued to increase steadily from 0% to 80% within a year of production despite prudent surveillance and controlling of production during injector's downtime. After the gas injection performance has improved, the well was beaned up as part of oil rim management for withdrawal balancing. Unfortunately, a month later, the production rate showed a sudden spike with significantly low wellhead pressure, followed by hairline leak on its choke valve and leak at Crude Oil Transfer Pump (COTP) recycle line. Sand analysis by particle size distribution (PSD) confirmed OHSAS failure, while the high gas rate from well test results confirmed AICD failure. A multidisciplinary investigation team was immediately formed to determine the root cause of the failure event. Root Cause Failure Analysis (RCFA) method was opted to determine the causes of failures, including the reanalyzing of the OHSAS and AICD completion design. The well operating strategy was also reviewed thoroughly by utilizing the well parameters trending provided in the Exceptional Based Surveillance (EBS) Process Information (PI) ProcessBook. Thorough RCFA concluded that frequent platform interruptions and improper well start-up practices have created abrupt pressure changes in the wellbore, which has likely destabilized the natural sand pack around the OHSAS and created frequent burst of sand influx across AICDs. The operating of a high gas-oil ratio (GOR) and high watercut sand prone well without pre-determined AICD sand erosion toleration envelope have also likely contributed to the failure of AICDs. The delay in detection of OHSAS failure in Well#1 due to ineffective sand monitoring method thus resulted in severe sand production which caused severe leak at its choke valve and COTP recycle line.


Sign in / Sign up

Export Citation Format

Share Document