Carbon, nitrogen and phosphorus dynamics under continuous cultivation as influenced by farmyard manure and inorganic fertilizers in the savanna of northern Nigeria

1997 ◽  
Vol 63 (1) ◽  
pp. 17-24 ◽  
Author(s):  
J.O. Agbenin ◽  
J.T. Goladi
1970 ◽  
Vol 6 (4) ◽  
pp. 345-350 ◽  
Author(s):  
R. G. Heathcote ◽  
K. R. Stockinger

SUMMARYInitial results of long-term trials in northern Nigeria indicate that deficiencies of potassium and trace elements, and soil acidity, may become important under continuous cultivation on some soils, in addition to the more common deficiencies of nitrogen and phosphorus.


2005 ◽  
Vol 50 (5) ◽  
pp. 882-890 ◽  
Author(s):  
MARK H. OLSON ◽  
MELISSA M. HAGE ◽  
MARK D. BINKLEY ◽  
JAMES R. BINDER

2021 ◽  
Vol 12 ◽  
Author(s):  
Ajay K. Bhardwaj ◽  
Deepika Rajwar ◽  
Rajender K. Yadav ◽  
Suresh K. Chaudhari ◽  
Dinesh K. Sharma

PurposeOne of the serious constraints for the integration of organics in soil fertility plans is the release and availability of nitrogen (N) to match the critical growth stages of a crop. The interplay between organic amendment characteristics and soil moisture conditions can significantly affect the nutrient release and availability, especially for dryland crops like wheat. In this study, the effects of integrated nutrient management strategies using diverse qualities of organic amendments on daily N mineralization and its availability to plants during the full growing season of the wheat crop were analyzed in a 10-year experiment.MethodsThe management included (1) F, inorganic fertilizers at 100% rate, compared to a reduced rate of inorganic fertilizers (55% N) supplemented with organic inputs via (2) GM, green manuring, (3) LE, legume cropping and its biomass recycling, (4) WS, wheat stubble retention, (5) RS, rice stubble retention, and (6) FYM, farmyard manure application, during the preceding rice season. Ion exchange resin (IER) membrane strips were used as plant root simulators to determine daily NH4+-N and NO3–-N availability in soil solution during the full wheat growing period.ResultsTotal available N for the full season was in the following order: GM (962 μg cm–2) > F (878 μg cm–2) > LE (872 μg cm–2) > FYM (865 μg cm–2) > RS (687 μg cm–2) > WS (649 μg cm–2). No significant differences were observed in NH4+-N availability throughout the cropping period as compared to NO3–-N which showed significant differences among management at critical crop growth stages.ConclusionLegume biomass incorporation (GM, LE) and farmyard manure (FYM) based management provided the most consistent supply equivalent to or even exceeding 100% inorganic fertilizers at several critical stages of growth, especially at tillering and stem elongation. Integration of organics in management increased nitrogen use efficiency 1.3–2.0 times, with cereal crop residue-based management having the highest efficiency followed by legume biomass incorporation.


Hydrobiologia ◽  
1993 ◽  
Vol 251 (1-3) ◽  
pp. 143-148 ◽  
Author(s):  
Sergiu Cristofor ◽  
Angheluta Vadineanu ◽  
Gheorghe Ignat

2018 ◽  
Vol 10 (4) ◽  
pp. 199 ◽  
Author(s):  
Hillary M. O. Otieno ◽  
George N. Chemining’wa ◽  
Shamie Zingore

Soybean is an important crop with nutrition, economic and soil fertility improvement benefits to farmers. However, its production in western Kenya is partly constrained by low soil pH and soil fertility levels. A greenhouse pot study was conducted to evaluate the effects of inorganic fertilizers, farmyard manure and lime application on soil pH, nutrient uptake, growth and nodulation of soybean grown in acidic soils from western Kenya. The experiment was set up in a randomized complete block design with eight treatments: control; NPK; manure; lime; manure+lime; NPK+manure; NPK+lime and manure+lime+NPK. Significant effects of inorganic fertilizers, manure and lime applications were observed on all the variables. Manure, lime and manure+lime treatments increased soil pH by 1.33, 2.19 and 2.28, respectively, above the control treatment. The shoot N was lower under control (1.71-1.81%), NPK (1.85-1.98%) and manure (2.00-2.11%) than under all other treatments. Treatments NPK+lime and manure+lime+NPK recorded higher uptake of P and K nutrients than all other treatments. The control and NPK treatments recorded shorter plants and low leaf area and above-ground biomass compared to other treatments. The NPK+lime and manure+lime+NPK treatments recorded higher plant height and aboveground biomass than other treatments. Lime+manure treatment recorded highest nodule numbers and dry weights per plant. Positive relationships were observed between pH and N, P and K nutrient uptake (R2 ranged between 0.30 and 0.77) and between biomass and N, P and K nutrient uptake (R2 ranged between 0.68 and 0.99). From this study, use of manure and lime could result in improved soil pH for better uptake of nutrients, nodule formation and productivity of soybean in Western Kenya.


Sign in / Sign up

Export Citation Format

Share Document