The effect of in vitro fibroblast growth factors on cell proliferation in pancreas from normal and streptozotocin-treated rats

2002 ◽  
Vol 57 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Vesselina Ogneva ◽  
Yordanka Martinova
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1705-1705
Author(s):  
Joyce S.G Yeoh ◽  
Ronald van Os ◽  
Ellen Weersing ◽  
Bert Dontje ◽  
Edo Vellenga ◽  
...  

Abstract Fibroblast Growth Factors (FGF) are a large family of signaling molecules widely involved in tissue development, maintenance and repair. Little is known about the role of FGF/FGF-receptor signaling in the regulation of adult hematopoietic stem cells (HSC). In this study, we assessed the potential of exogenously added FGF-1/2, or retrovirally overexpressed FGF-1 to preserve HSC function in vitro and in vivo. First, we demonstrate that in vitro culture of unfractionated mouse bone marrow cells, in serum-free medium, supplemented with FGF-1 or FGF-2 or FGF-1 + 2 resulted in the robust generation of long-term repopulating (LTR) HSCs. Cultures were maintained for 12 weeks and during that time in vivo competitive reconstitution assays were performed. Stem cell activity was detectable at 3, 5, and 8 weeks after initiation of culture, but lost after 12 weeks. However, whereas 3 and 5 week cultured cells provided radioprotection in non-competitive assays, animals transplanted with 8 or 12 week cultured cells succumbed due to bone marrow failure. So far, we have been unable to expand single, highly purified Lin−Sca-1+c-Kit+ using FGF-1 + 2. Consequently, we speculated that essential intermediate cell populations or signals are required for FGF-induced stem cell conservation. To test this we cultured highly purified CD45.1 Lin−Sca-1+c-Kit+ cells in a co-culture with CD45.2 unfractionated BM. Co-cultured cells were transplanted after 5 weeks in lethally irradiated recipients, and CD45.1 chimerism levels were assessed. High levels of CD45.1 chimerism confirmed that Lin−Sca-1+c-Kit+ cells require an accessory signal in addition to FGF to induced stem cell activity in vitro. We subsequently tested stem cell potential of cells cultured in FGF-1 + 2 for 5 weeks, with the addition of SCF + IL-11 + Flt3L for the last 2, 4 or 7 days. Cell numbers increased with increasing time of growth factor presence. However, only when growth factors were present for 2 days engraftment of cultured cells in a competitive repopulation assay was increased 3.5-fold. Finally, we show by immunohistochemistry that ~10% of freshly isolated Lin−Sca-1+c-Kit+ expresses high levels of FGF-1. Retroviral overexpression of FGF-1 in stem cells resulted in increased growth potential and sustained clonogenic activity in vitro. Upon transplantation of transduced stem cells, FGF-1 overexpression resulted in increased white blood cell counts 4 weeks post-transplant compared to control animals. Most notable was a marked granulocytosis in FGF-1 overexpressing recipients Our results reveal FGF as an important regulator of HSC signaling and homeostasis. Importantly, in the presence of FGF stem cells can be maintained in vitro for 2 months. These findings open novel avenues for in vitro manipulation of stem cells for future clinical therapies.


1980 ◽  
Vol 39 (3) ◽  
pp. 388
Author(s):  
F. J. Sell ◽  
F. C. Westall ◽  
W. R. Woodward ◽  
D. Gospodarowicz

2010 ◽  
Vol 22 (1) ◽  
pp. 228
Author(s):  
M. I. Giassetti ◽  
Q. E. Yang ◽  
A. D. Ealy

Following hatching, bovine and ovine blastocysts elongate into tubular and then filamentous conceptuses that remain free-floating for several days before attaching to the uterine lining. Elongation is marked by trophectoderm proliferation and changes in trophectoderm shape. The ultimate goal of this work is to identify uterine- and conceptus-derived factors that control peri-attachment conceptus development in cattle. Fibroblast growth factors (FGF) encompass a large family of mitogens, morphogens, and angiogenic factors produced by various tissues, including the bovine/ovine endometrium and conceptus. FGF2 and FGF10 are of particular interest because uterine production of FGF2 and conceptus production of FGF10 intensify as elongation takes place in cattle and sheep. The objective of this work was to determine if FGF2 and FGF10 stimulate bovine trophectoderm migration during culture. Migration assays were conducted with CT1 cells, a trophectoderm line established from a bovine in vitro-produced blastocyst outgrowth. Cells were seeded on 8-μm pore Transwell inserts (Corning Inc., Corning, NY, USA; 50,000 cells/insert) and submerged in serum-free DMEM containing treatments (0, 0.5, 5, 50, and 500 ng mL-1 of recombinant bovine FGF2 or human FGF10). After 12 h, cells that migrated onto the lower surface were fixed, stained, and processed for counting using epifluorescence microscopy. Migrated cells were counted in 5 non-overlapping locations on each of 4 replicate Transwell inserts for each treatment. Experiments were repeated on at least 3 different occasions. Analysis of variance was completed. Differences in individual means were partitioned further by completing pair-wise comparisons. Supplementation with 5 or 50 ng mL-1 of FGF2 increased (P = 0.06 and P = 0.002, respectively) migration of CT1 cells when compared with controls (327 ± 17 or 485 ± 40 cells, respectively, v. 162 ± 16 cells). Supplementation with 500 ng mL-1 of FGF2 further increased (P < 0.02) migration when compared with controls and cells exposed to lower levels of FGF2 (548 ± 116 cells). FGF10 also stimulated CT1 migration. Supplementation with 0.5 ng mL-1 of FGF10 increased (P = 0.06) cell migration v. controls (254 ± 48 v. 184 ± 24 cells). Supplementation with 5 ng mL-1 further increased (P < 0.007) cell migration (373 ± 29 cells). Exposure to greater FGF10 concentrations did not further enhance cell migration. To summarize, both FGF2 and FGF10 promoted CT1 migration, suggestive of a potential function in regulating trophectoderm development, differentiation, and/or morphogenesis during peri-attachment conceptus development. FGF10 appeared to be more potent than FGF2 at mediating CT1 migration. The reason for this disparity has not been resolved but likely involves differences in ligand affinities to certain receptor subtypes. This project was supported by NRI Competitive Grant No. 2008-35203-19106 from the USDA-CSREES.


Sign in / Sign up

Export Citation Format

Share Document