High-temperature wear resistance of a laser clad TiC reinforced FeAl in situ composite coating

2004 ◽  
Vol 179 (2-3) ◽  
pp. 252-256 ◽  
Author(s):  
Y. Chen ◽  
H.M. Wang
Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 682
Author(s):  
Liang Sun ◽  
Wenyan Zhai ◽  
Hui Dong ◽  
Yiran Wang ◽  
Lin He

Cr3C2-Ni cermet is a kind of promising material especially for wear applications due to its excellent wear resistance. However, researches were mainly concentrated on the experiment condition of room temperature, besides high-temperature wear mechanism of the cermet would be utilized much potential applications and also lack of consideration. In present paper, the influence of Mo content on the high-temperature wear behavior of in-situ Cr3C2-20 wt. % Ni cermet was investigated systematically. The friction-wear experiment was carried out range from room temperature to 800 °C, while Al2O3 ceramic was set as the counterpart. According to experimental results, it is indicated that the coefficient of friction (COF) of friction pairs risen at the beginning of friction stage and then declined to constant, while the wear rate of Cr3C2-20 wt. % Ni cermet risen continuously along with temperature increased, which attributes to the converted wear mechanism generally from typical abrasive wear to severe oxidation and adhesive wear. Generally, the result of wear resistance was enhanced for 13.4% (at 400 °C) and 31.5% (at 800 °C) by adding 1 wt. % Mo. The in-situ newly formed (Cr, Mo)7C3 ceramic particle and the lubrication phase of MoO3 can effectively improve the wear resistance of Cr3C2-20 wt. % Ni cermet.


Applied laser ◽  
2013 ◽  
Vol 33 (4) ◽  
pp. 370-375
Author(s):  
徐卫仙 Xu Weixian ◽  
张群莉 Zhang Qunli ◽  
姚建华 Yao Jianhua

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1688
Author(s):  
Jin Sha ◽  
Liang-Yu Chen ◽  
Yi-Tong Liu ◽  
Zeng-Jian Yao ◽  
Sheng Lu ◽  
...  

The remelting method is introduced to improve the properties of the as-sprayed NiCrBSi coatings. In this work, tungsten carbide (WC) was selected as reinforcement and the as-sprayed and remelted NiCrBSi/WC composite coatings were investigated by X-ray diffraction, scanning electron microscopy, hardness test and tribology test. After spraying, WC particles are evenly distributed in the coating. The remelting process induced the decarburizing reaction of WC, resulting in the formation of dispersed W2C. The dispersed W2C particles play an important role in the dispersion strengthening. Meanwhile, the pores and lamellar structures are eliminated in the remelted NiCrBSi/WC composite coating. Due to these two advantages, the hardness and the high-temperature wear resistance of the remelted NiCrBSi/WC composite coating are significantly improved compared with those with an as-sprayed NiCrBSi coating; the as-sprayed NiCrBSi coating, as-sprayed NiCrBSi/WC composite coating and remelted NiCrBSi/WC composite coating have average hardness of 673.82, 785.14, 1061.23 HV, and their friction coefficients are 0.3418, 0.3261, 0.2431, respectively. The wear volume of the remelted NiCrBSi/WC composite coating is only one-third of that of the as-sprayed NiCrBSi coating.


2014 ◽  
Vol 41 (5) ◽  
pp. 0503002
Author(s):  
张群莉 Zhang Qunli ◽  
徐卫仙 Xu Weixian ◽  
姚建华 Yao Jianhua ◽  
陈赵扬 Chen Zhaoyang ◽  
马淳安 Ma Chunan

Author(s):  
Oleksandr M. Kostin ◽  
Anastasiia Yu. Butenko ◽  
Volodymyr O. Martynenko

Sign in / Sign up

Export Citation Format

Share Document