Radioactive contamination in the marine environment adjacent to the outfall of the radioactive waste treatment plant at ATOMFLOT, northern Russia

2002 ◽  
Vol 61 (1) ◽  
pp. 111-131 ◽  
Author(s):  
J.E Brown ◽  
A Nikitin ◽  
N.K Valetova ◽  
V.B Chumichev ◽  
I.Yu Katrich ◽  
...  
Author(s):  
Gheorghe C. Dogaru

Abstract A component of the quality assurance system applied at Radioactive Waste Treatment Plant refers to the collection, identification and characterisation of radioactive waste including spent sealed radioactive sources before their treatment and conditioning. One of the most important challenges to be solved is to apply this procedure to the collection and characterisation of the “historical” radioactive waste for which is not recorded and no analyse bulletin for characterisation and identification is existing. The procedure “Collection and characterization of radioactive waste” applied at the Radioactive Waste Treatment Plant is based on regulatory requirements concerning collection, characterization and identification of all radioactive materials including sealed spent radioactive sources.


Author(s):  
Gheorghe Barariu

This paper presents the design criteria and the prerequisites for the development of the Radioactive Waste Treatment Plant - RWTP which will comply with L/ILW Final Repository requirements to be built near Cernavoda NPP. The RWTP will be designed to satisfy the main performance objectives in accordance to IAEA recommendation and on basis of the Repository’s Waste Acceptance Criteria resulted from the local conditions. One of the most important technological aspect is related to the selection of technologies, which implies, on the one hand, the impact on present generation respectively incineration, radwaste transfer from the SS drums to CS drums, SS drums super compaction and spent filter cartridges cutting, and on the other hand, technologies that isolate for 300 years the tritium and C-14 in the Repository with impact for the next generations. The Saligny Repository will be commissioned in 2014 and in order to accept radwastes from Cernavoda NPP it is necessary that the radwastes are suitably treated for long–term radionuclides isolation. The conditions and requirements including many uncertainties and constraints reduce the possibilities to select the suitable treatment technologies for the Waste Treatment Plant designed for the radwastes generated by Cernavoda NPP, this selection being a critical case due to the limited storage capacity of existing Radioactive Waste Storage Facility. The necessary Radioactive Waste Treatment Plant implies a detailed analysis including ethical aspects of the selected technologies.


Author(s):  
Brigette Rosendall ◽  
Chris Barringer ◽  
Feng Wen ◽  
Kelly J. Knight

The Columbia River in Washington State is threatened by the radioactive legacy of the cold war. Two hundred thousand cubic meters (fifty-three million US gallons) of radioactive waste is stored in 177 underground tanks (60% of the Nation’s radioactive waste). A vast complex of waste treatment facilities is being built to convert this waste into stable glass (vitrification). The waste in these underground tanks is a combination of sludge, slurry, and liquid. The waste will be transported to a pre-treatment facility where it will be processed before vitrification. It is necessary to keep the solids in suspension during processing. The mixing devices selected for this task are known as pulse-jet mixers (PJMs). PJMs cyclically empty and refill with the contents of the vessel to keep it mixed. The transient operation of the PJMs has been proven successful in a number of applications, but needs additional evaluation to be proven effective for the slurries and requirements at the Waste Treatment Plant (WTP). Computational fluid dynamic (CFD) models of mixing vessels have been developed to demonstrate the ability of the PJMs to meet mixing criteria. Experimental studies have been performed to validate these models. These tests show good agreement with the transient multiphase CFD models developed for this engineering challenge.


Author(s):  
T. Bond Calloway ◽  
Christopher J. Martino ◽  
Carol M. Jantzen ◽  
William R. Wilmarth ◽  
Michael E. Stone ◽  
...  

Evaporation of High Level and Low Activity (HLW & LAW) radioactive wastes for the purposes of radionuclide separation and volume reduction has been conducted at the Savannah River and Hanford Sites for more than forty years. Additionally, the Savannah River Site (SRS) has used evaporators in preparing HLW for immobilization into a borosilicate glass matrix. The Hanford River Protection Project (RPP) is in the process of building the world’s largest radioactive waste treatment facility, Waste Treatment Plant (WTP), which will use evaporators to concentrate the liquid waste and plant recycles prior to immobilization into a borosilicate glass matrix. Radioactive waste is evaporated at each site using various evaporator designs (e.g., forced circulation, horizontal bent tube). While the equipment used to evaporate radioactive waste is relatively simple in design, the complexity in the evaporator processes in current service and in those currently in the design stages stems from the heterogeneous nature of the waste and the effects of seemingly minor components (e.g., Si) on the process. Aqueous electrolyte thermodynamic modeling and experiments have been conducted by the SRS Savannah River Technology Center (SRTC) in support of the SRS HLW and Defense Waste Processing Facility (DWPF) Evaporators and the Hanford RPP WTP. After 40 years of successful operation, accumulation of two solid phases (a nitrated aluminosilicate, Na8AL6Si6O24(NO3)2•4H2O and sodium diuranate, Na2U2O7) developed as an insoluble phase in the Savannah River Site (SRS) 2H evaporator in 1996. The aluminosilicate scale deposit caused the SRS 2-H evaporator to become completely inoperable by October 1999. Accumulation of the sodium diuranate phase on the aluminosilicate scale has caused criticality concerns. Modeling and experiments were conducted to develop a method to control the process chemistry in order to prevent the formation of aluminosilicate deposits in the future. The lessons learned from the development, design, and operation of the SRS waste treatment facilities and the currently operating 242-A Hanford HLW evaporators were applied by SRTC in support of the development and design of the Hanford WTP evaporators. Thermodynamic equilibrium modeling along with solubility and physical property experiments are being conducted to develop process control and flow sheet models. Additionally, lessons learned from the development of an advanced antifoam agent for the SRS vitrification process evaporators are being applied to the testing and development of an antifoam agent for the Hanford WTP evaporators. This paper will discuss the methodologies, results, and achievements of the SRTC evaporator development program that was conducted in support of the SRS and Hanford WTP evaporator processes. The “cross-pollination” and application of waste treatment technologies and methods between the Savannah River and Hanford Sites will be highlighted. The “cross-pollination” of technologies and methods is expected to benefit the Department of Energy’s Mission Acceleration efforts by reducing the overall cost and time for the development of the baseline waste treatment processes.


2015 ◽  
Author(s):  
Judith Ann Bamberger ◽  
Carl W. Enderlin ◽  
Michael J. Minette ◽  
Langdon K. Holton

A standardized vessel design is being considered at the Waste Treatment and Immobilization Plant (WTP) that is under construction at Hanford, Washington. The standardized vessel design will be used for storing, blending, and chemical processing of slurries that exhibit a variable process feed including Newtonian to non-Newtonian rheologies over a range of solids loadings. Developing a standardized vessel is advantageous and reduces the testing required to evaluate the performance of the design. The objectives of this paper are to: 1) present a design strategy for developing a standard vessel mixing system design for the pretreatment portion of the waste treatment plant that must process rheologically and physically challenging process streams, 2) identify performance criteria that the design for the standard vessel must satisfy, 3) present parameters that are to be used for assessing the performance criteria, and 4) describe operation of the selected technology. Vessel design performance will be assessed for both Newtonian and non-Newtonian simulants which represent a range of waste types expected during operation. Desired conditions for the vessel operations are the ability to shear the slurry so that flammable gas does not accumulate within the vessel, that settled solids will be mobilized, that contents can be blended, and that contents can be transferred from the vessel. A strategy is presented for adjusting the vessel configuration to ensure that all these conditions are met.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Tee L. Guidotti

On 16 October 1996, a malfunction at the Swan Hills Special Waste Treatment Center (SHSWTC) in Alberta, Canada, released an undetermined quantity of persistent organic pollutants (POPs) into the atmosphere, including polychlorinated biphenyls, dioxins, and furans. The circumstances of exposure are detailed in Part 1, Background and Policy Issues. An ecologically based, staged health risk assessment was conducted in two parts with two levels of government as sponsors. The first, called the Swan Hills Study, is described in Part 2. A subsequent evaluation, described here in Part 3, was undertaken by Health Canada and focused exclusively on Aboriginal residents in three communities living near the lake, downwind, and downstream of the SHSWTC of the area. It was designed to isolate effects on members living a more traditional Aboriginal lifestyle. Aboriginal communities place great cultural emphasis on access to traditional lands and derive both cultural and health benefits from “country foods” such as venison (deer meat) and local fish. The suspicion of contamination of traditional lands and the food supply made risk management exceptionally difficult in this situation. The conclusion of both the Swan Hills and Lesser Slave Lake studies was that although POPs had entered the ecosystem, no effect could be demonstrated on human exposure or health outcome attributable to the incident. However, the value of this case study is in the detail of the process, not the ultimate dimensions of risk. The findings of the Lesser Slave Lake Study have not been published previously and are incomplete.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 131-136 ◽  
Author(s):  
A. D. Wong ◽  
C. D. Goldsmith

The effect of discharging specific oil degrading bacteria from a chemostat to a refinery activated sludge process was determined biokinetically. Plant data for the kinetic evaluation of the waste treatment plant was collected before and during treatment. During treatment, the 500 gallon chemostatic growth chamber was operated on an eight hour hydraulic retention time, at a neutral pH, and was fed a mixture of refinery wastewater and simple sugars. The biokinetic constants k (days−1), Ks (mg/L), and K (L/mg-day) were determined before and after treatment by Monod and Lineweaver-Burk plots. Solids discharged and effluent organic concentrations were also evaluated against the mean cell retention time (MCRT). The maximum utilization rate, k, was found to increase from 0.47 to 0.95 days−1 during the operation of the chemostat. Subsequently, Ks increased from 141 to 556 mg/L. Effluent solids were shown to increase slightly with treatment. However, this was acceptable due to the polishing pond and the benefit of increased ability to accept shock loads of oily wastewater. The reason for the increased suspended solids in the effluent was most likely due to the continual addition of bacteria in exponential growth that were capable of responding to excess substrate. The effect of the chemostatic addition of specific microbial inocula to the refinery waste treatment plant has been to improve the overall organic removal capacity along with subsequent gains in plant stability.


1994 ◽  
Vol 29 (8) ◽  
pp. 235-250 ◽  
Author(s):  
Norbert Amsoneit

As a rule, hazardous waste needs a pre-treatment, either a thermal or a chemical-physical one, before it can be disposed of at a landfill. The concentration of different kinds of treatment facilities at a Centralized Hazardous Waste Treatment Plant is advantageous. The facility of the ZVSMM at Schwabach is presented as an outstanding example of this kind of Treatment Centre. The infrastructure, the chemical-physical plant with separate lines for the treatment of organic and inorganic waste and the hazardous waste incinerator are described. Their functions are discussed in detail. Emphasis is laid on handling the residues produced by the different treatment processes and the final disposal.


Sign in / Sign up

Export Citation Format

Share Document