Serotonin inhibits voltage-gated sodium current by cyclic adenosine monophosphate-dependent mechanism in bullfrog taste receptor cells

2000 ◽  
Vol 294 (3) ◽  
pp. 151-154 ◽  
Author(s):  
Kotapola G Imendra ◽  
Rie Fujiyama ◽  
Takenori Miyamoto ◽  
Yukio Okada ◽  
Toshihide Sato
2002 ◽  
Vol 283 (1) ◽  
pp. R115-R129 ◽  
Author(s):  
Fang-Li Zhao ◽  
Shao-Gang Lu ◽  
Scott Herness

Although the numerous stimuli representing the taste quality of bitterness are known to be transduced through multiple mechanisms, recent studies have suggested an unpredicted complexity of the transduction pathways for individual bitter stimuli. To investigate this notion more thoroughly, a single prototypic bitter stimulus, caffeine, was studied by using patch-clamp and ratiometric imaging techniques on dissociated rat taste receptor cells. At behaviorally relevant concentrations, caffeine produced strong inhibition of outwardly and inwardly rectifying potassium currents. Caffeine additionally inhibited calcium current, produced a weaker inhibition of sodium current, and was without effect on chloride current. Consistent with its effects on voltage-dependent currents, caffeine caused a broadening of the action potential and an increase of the input resistance. Caffeine was an effective stimulus for elevation of intracellular calcium. This elevation was concentration dependent, independent of extracellular calcium or ryanodine, and dependent on intracellular stores as evidenced by thapsigargin treatment. These dual actions on voltage-activated ionic currents and intracellular calcium levels suggest that a single taste stimulus, caffeine, utilizes multiple transduction mechanisms.


2014 ◽  
Vol 20 (16) ◽  
pp. 2684-2692 ◽  
Author(s):  
Shusuke Iwata ◽  
Ryusuke Yoshida ◽  
Yuzo Ninomiya

1997 ◽  
Vol 273 (6) ◽  
pp. R1923-R1931 ◽  
Author(s):  
Robert F. Lundy ◽  
David W. Pittman ◽  
Robert J. Contreras

The effects of the epithelial Na+channel antagonists amiloride and benzamil and the Na+/H+exchange antagonist 5-( N, N-dimethyl)-amiloride (DMA)-Cl on the integrated responses of the chorda tympani nerve to 30, 75, 150, 300, and 500 mM concentrations of NaCl, KCl, and NH4Cl were assessed in male Sprague-Dawley rats. Based on evidence from other systems, 1 and 25 μM amiloride and benzamil were chosen to selectively inhibit epithelial Na+ channels and 1 μM DMA was chosen to selectively inhibit Na+/H+exchange. When added to stimulating salt solutions, amiloride, benzamil, and DMA were each effective in inhibiting responses to all three salts. The degree of inhibition varied with drug, salt, and salt concentration, but not drug dose. Amiloride suppressed NaCl responses to a greater degree than KCl and NH4Cl responses, whereas DMA suppressed NH4Cl responses to a greater degree than NaCl and KCl responses. In all but one case (25 μM amiloride added to KCl), drug suppression of taste nerve responses decreased with an increase in salt concentration. The present results suggest that 1) epithelial Na+ channels in rat taste receptor cells may play a role in KCl and NH4Cl taste transduction; 2) a Na+/H+exchange protein may be present in taste receptor cells, representing a putative component, in addition to epithelial Na+ channels, in salt taste transduction; and 3) salt taste detection and transduction may depend on the utilization of a combination of common and distinct transcellular pathways.


Sign in / Sign up

Export Citation Format

Share Document