Electromagnetic behaviour of high-Tc superconducting tapes: a numerical simulation approach

2002 ◽  
Vol 242-245 ◽  
pp. 1236-1239 ◽  
Author(s):  
A.E. Mahdi
2012 ◽  
Vol 569 ◽  
pp. 395-399
Author(s):  
Jing Zhao ◽  
Guo Yu Wang ◽  
Yan Zhao ◽  
Yue Ju Liu

A numerical simulation approach of ventilated cavity considering the compressibility of gases is established in this paper, introducing the gas state equation into the calculation of ventilated supercavitating flow. Based on the comparison of computing results and experimental data, we analyzes the differences between ventilated cavitating flow fields with and without considered the compressibility of gases. The effect of ventilation on the ventilated supercavitating flow field structure is discussed considering the compressibility of gases. The results show that the simulation data of cavity form and resistance, which takes the compressibility of gases into account, accord well with the experimental ones. With the raising of ventilation temperature, the gas fraction in the front cavity and the gas velocity in the cavity increase, and the cavity becomes flat. The resistance becomes lower at high ventilation temperature, but its fluctuation range becomes larger than that at low temperature.


1995 ◽  
Vol 115 (3) ◽  
pp. 251-256 ◽  
Author(s):  
Takeshi Kato ◽  
Ken-ichi Sato ◽  
Takato Masuda ◽  
Toshikazu Shibata ◽  
Shigeki Isojima ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


Sign in / Sign up

Export Citation Format

Share Document