Influence of film thickness on deformation of a free magnetostrictive film-substrate system

2002 ◽  
Vol 247 (1) ◽  
pp. 111-116 ◽  
Author(s):  
W.X. Zhang ◽  
B. Peng ◽  
H.C. Jiang ◽  
S.Q. Yang
1993 ◽  
Vol 318 ◽  
Author(s):  
D. Lubben ◽  
F. A. Modine

ABSTRACTThe ionic conductivity of LiI thin films grown on sapphire(0001) substrates has been studied in situ during deposition as a function of film thickness and deposition conditions. LiI films were produced at room temperature by sublimation in an ultra-high-vacuum system. The conductivity of the Lil parallel to the film/substrate interface was determined from frequency-dependent impedance measurements as a function of film thickness using Au interdigital electrodes deposited on the sapphire surface. The measurements show a conduction of ∼5 times the bulk value at the interface which gradually decreases as the film thickness is increased beyond 100 nm. This interfacial enhancement is not stable but anneals out with a characteristic log of time dependence. Fully annealed films have an activation energy for conduction (σT) of ∼0.47 ± .03 eV, consistent with bulk measurements. The observed annealing behavior can be fit with a model based on dislocation motion which implies that the increase in conduction near the interface is not due to the formation of a space-charge layer as previously reported but to defects generated during the growth process. This explanation is consistent with the behavior exhibited by CaF2 films grown under similar conditions.


1990 ◽  
Vol 5 (8) ◽  
pp. 1605-1611 ◽  
Author(s):  
S. J. Golden ◽  
H. Isotalo ◽  
M. Lanham ◽  
J. Mayer ◽  
F. F. Lange ◽  
...  

Superconducting YBaCuO thin films have been fabricated on single-crystal MgO by the spray-pyrolysis of nitrate precursors. The effects on the superconductive behavior of processing parameters such as time and temperature of heat treatment and film thickness were investigated. The superconductive behavior was found to be strongly dependent on film thickness. Films of thickness 1 μm were found to have a Tc of 67 K while thinner films showed appreciably degraded properties. Transmission electron microscopy studies have shown that the heat treatments necessary for the formation of the superconductive phase (for example, 950 °C for 30 min) also cause a substantial degree of film-substrate interdiffusion. Diffusion distances for Cu in the MgO substrate and Mg in the film were found to be sufficient to explain the degradation of the superconductive behavior in films of thickness 0.5 μm and 0.2 μm. From the concentration profiles obtained by EDS analysis diffusion coefficients at 950 °C for Mg into the YBaCuO thin film and for Cu into the MgO substrate were evaluated as 3 × 10−19 m2/s and 1 × 10−17 m2/s, respectively.


2006 ◽  
Vol 21 (6) ◽  
pp. 1600-1606 ◽  
Author(s):  
S. Zhong ◽  
S.P. Alpay ◽  
V. Nagarajan

The scaling of the piezoelectric and dielectric constants with film thickness in ultra-thin ferroelectric heterostructures is investigated. Epitaxial (001) PbZr0.2Ti0.8O3 films ranging in thickness from 5 nm to 30 nm with top and bottom SrRuO3 electrodes were grown onto (001) SrTiO3 substrates via pulsed laser deposition. Piezoelectric and dielectric measurements were performed using an atomic force microscope. The remnant value of the out of plane piezoresponse (d33) decreases from 60 pm/V for the 30 nm film to just 7 pm/V for the 5 nm film. This systematic decline in d33 is accompanied by a corresponding increase in the coercive field. The d33 loops show a systematic increase in tilt towards the applied field axis as function of reducing thickness coupled with a decrease in piezoelectric tunability. The small-signal relative dielectric response in the direction normal to the film-substrate interface decreases from 140 for a 50 nm film to just 60 for a 8 nm film. A similar drop is also observed in the dielectric tunability, from ∼17% to approximately −2% at an electric field of 750 kV/cm with the film thickness decreasing from 50 nm to 8 nm. We show that these observations cannot be explained using a straightforward application of a modified Landau-Devonshire thermodynamic model that incorporates the internal stresses due to the lattice and thermal expansion mismatch between the film and the substrate. We attribute this behavior to degradation in the polarization due to an intrinsic finite size effect.


2004 ◽  
Vol 19 (6) ◽  
pp. 1791-1802 ◽  
Author(s):  
Noureddine Tayebi ◽  
Andreas A. Polycarpou ◽  
Thomas F. Conry

A comparative study on the effects of the substrate on the determination of hardness of thin films by the use of the nanoscratch and nanoindentation techniques was conducted. Gold films deposited on fused quartz substrates and silicon dioxide films deposited on aluminum substrates with variant film thicknesses were investigated. These two systems correspond to a soft film on a hard substrate and a hard film on a soft substrate, respectively. The effect of substrate interaction on the measurement of hardness using the nanoscratch technique was found to be less pronounced compared to that of the nanoindentation technique due to: (i) the lower normal loads applied to achieve the penetration depths that occur at higher loads when using the nanoindentation method; (ii) the direct imaging of the residual deformation profile that is used in the nanoscratch technique, which allows for the effects of pileup or sink-in to be taken into account, whereas in the nanoindentation technique the contact area is estimated from the load-displacement data, which does not include such effects; and (iii) the account of elastic recovery of the plastically deformed surfaces from scratch tests. The film thickness did not appear to have any effect on the hardness of Au and SiO2 films obtained from nanoscratch data. This observation allowed, for the case of SiO2 films, the determination of the “free substrate effect region” and the derivation of an empirical relationship that relates the composite hardness of the film/substrate system to the contact-depth-to-film-thickness ratio, even when the indenter penetrates into the substrate. Such findings can allow for the determination of the intrinsic hardness of ultrathin hard films (∼1–5 nm thick), where the substrate effect is unavoidable.


2013 ◽  
Vol 81 (5) ◽  
Author(s):  
Qiming Wang ◽  
Xuanhe Zhao

Subject to a compressive membrane stress, an elastic film bonded on a substrate can become unstable, forming wrinkles, creases or delaminated buckles. Further increasing the compressive stress can induce advanced modes of instabilities including period-doubles, folds, localized ridges, delamination, and coexistent instabilities. While various instabilities in film-substrate systems under compression have been analyzed separately, a systematic and quantitative understanding of these instabilities is still elusive. Here we present a joint experimental and theoretical study to systematically explore the instabilities in elastic film-substrate systems under uniaxial compression. We use the Maxwell stability criterion to analyze the occurrence and evolution of instabilities analogous to phase transitions in thermodynamic systems. We show that the moduli of the film and the substrate, the film-substrate adhesion strength, the film thickness, and the prestretch in the substrate determine various modes of instabilities. Defects in the film-substrate system can facilitate it to overcome energy barriers during occurrence and evolution of instabilities. We provide a set of phase diagrams to predict both initial and advanced modes of instabilities in compressed film-substrate systems. The phase diagrams can be used to guide the design of film-substrate systems to achieve desired modes of instabilities.


Author(s):  
F. Avile´s ◽  
L. Llanes ◽  
A. I. Oliva ◽  
J. E. Corona ◽  
M. Aguilar-Vega ◽  
...  

Metallic thin films have been extensively used as coatings, interconnections, sensors and as part of micro and nano-electromechanical devices (MEMS and NEMS). The conventional substrates utilized to deposit those films are normally rigid, such as silicon. However, for applications where the substrate is subjected to significant mechanical strain (e.g. automotive coatings, electronic textiles, bioengineering, etc.) the film-substrate system needs to be flexible and conformable. Compliant polymeric substrates are ideal candidates for such a task. Some interesting mechanical properties not achieved with conventional rigid substrates can be transmitted to the film by the use of polymeric substrates. In this work, mechanical properties of 50 to 300 nm gold films deposited by thermal deposition over two thermoplastic substrates are investigated. A commercial thermoplastic, Polysulfone (“PSF”), and a home-synthesized isophthalic polyester based on the reaction of 4, 4′-(1-hydroxyphenylidene) phenol and isophthaloyl dichloride (“BAP”) [1] were used as raw materials for substrate production. Substrates were selected based on their good mechanical properties and flexibility. The use of two different substrates allows us to investigate the influence of the substrate mechanical properties in the bimaterial response. Substrates of 80 μm thickness were prepared by solution casting and cut to rectangular shapes of nominal dimensions of 30 mm × 5 mm. High purity (99.999%) commercial gold splatters were used for film deposition. Gold films with thickness of 50, 100, 200, and 300 nm were deposited onto PSF substrates by thermal evaporation inside a vacuum chamber at 3×10−5 Torr. Au films with 100 nm thickness were also deposited over BAP substrates. Four replicates of each type were deposited (at the same time) and used for tensile testing. Tensile testing of Au/PSF (film thickness 50–300 nm) and Au/BAP (film thickness 100 nm) specimens was conducted. Tests of the neat PSF and BAP substrates (6 replicates) were also conducted as a baseline. Tensile testing was conducted in a small universal testing machine with a load cell of 200 N and a cross head speed of 0.05 mm/min. The film mechanical properties were extracted from the tensile response of the film/substrate system, considered as a bimaterial. Based on sum of forces and strain compatibility, the film modulus (Ef) and stress (σf) can be extracted from characteristics of the bimaterial (EBim, σBim) and substrate (Es, σs), to generate a stress-strain curve for the film, see e.g. [2], Ef=1Af[ABimEBim−AsEs]=1+tstfEBim−tstfEs(1a)σf=1Af[P−Ps]=1+tstfσBim−tstfσs(1b) where P is the applied load, A = wt is the cross sectional area and sub-index “Bim” corresponds to the film-substrate bimaterial (ABim = w(ts+tf)). Figure 1 shows film stress (σ)-strain (ε) representative curves for Au films with different thicknesses extracted from the Au/PSF bimaterials. The film behavior presents only a small region of plasticity close to the ultimate strain. Thus, the numerical value of the maximum stress (strength) is close to its yield strength. The large plasticity of the substrate may hinder the plasticity of gold when acting as a bimaterial. As observed from this figure, the film modulus, strength and ultimate strain increase as the film thickness decreases, evidencing a “thickness-effect” not observed in bulk materials. Slightly different properties were obtained for the Au films deposited over the BAP substrate, which evidences some substrate-dependency of the film properties.


2005 ◽  
Vol 20 (6) ◽  
pp. 1606-1612 ◽  
Author(s):  
D. Wan ◽  
K. Komvopoulos

The effect of the film thickness on the phase transformations encountered in sputtered titanium-nickel (TiNi) shape-memory films due to thermal cycling in the temperature range of −150 to 150 °C was examined in the context of electrical resistivity (ER) measurements. A hysteresis in the ER response was observed for film thickness greater than 300 nm. This phenomenon is characteristic of shape-memory materials and is attributed to the rhombohedral (R) phase produced during cooling from the high-temperature cubic austenite phase to the low-temperature monoclinic martensite phase. The decrease of the TiNi film thickness below 300 nm resulted in a smaller ER hysteresis, leading eventually to its disappearance for film thickness less than ∼50 nm. The results indicate that spatial constraints introduced by the film surface and film/substrate interface generate a resistance force, which prevents lattice distortion and twinning. The inhibition of these mechanisms, which control self-accommodation R-phase transformation, leads to the suppression and eventual disappearance of the shape memory effect for film thickness less than ∼100 nm.


1998 ◽  
Vol 13 (2) ◽  
pp. 388-395 ◽  
Author(s):  
Melissa J. Paterson ◽  
Peter J. K. Paterson ◽  
Besim Ben-Nissan

The structure, morphology, and mechanical properties of sol-gel zirconia films have been examined using XRD, AES depth profiling, AFM, and ultramicro indentation. There is a systematic variation in the structure and morphology of the zirconia films with increasing thickness. These changes include increases in the amount of monoclinic phase, substrate oxides, and a decrease in grain size. Ultramicro indentation measurements indicate measured hardness increases with film thickness. The highest hardness value was 6.12 GPa for a 900 nm thick film. However, these values may be influenced by the substrate oxide layer at the film/substrate interface which increases with film thickness. The modulus of the films appears to be thickness independent. As the films are made up of a number of separately fired layers, it appears that the property changes observed are also related to the number of thermal cycles experienced by the sample.


Sign in / Sign up

Export Citation Format

Share Document