Evaluation of the Skin Sensitization Potential of Silica nanoparticles using in vitro and in vivo assay

2021 ◽  
Vol 350 ◽  
pp. S72
Author(s):  
D.H. Lee ◽  
S.-H. Kim ◽  
J.H. Lee ◽  
J.-Y Yang ◽  
H.-S. Shin ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2140
Author(s):  
Sung-Hyun Kim ◽  
Dong Han Lee ◽  
SeoYoon Choi ◽  
Jun-Young Yang ◽  
Kikyung Jung ◽  
...  

Nowadays, various industries using nanomaterials are growing rapidly, and in particular, as the commercialization and use of nanomaterials increase in the cosmetic field, the possibility of exposure of nanomaterials to the skin of product producers and consumers is increasing. Due to the unique properties of nanomaterials with a very small size, they can act as hapten and induce immune responses and skin sensitization, so accurate identification of toxicity is required. Therefore, we selected silica nanomaterials used in various fields such as cosmetics and biomaterials and evaluated the skin sensitization potential step-by-step according to in-vitro and in-vivo alternative test methods. KeratinoSensTM cells of modified keratinocyte and THP-1 cells mimicking dendritic-cells were treated with silica nanoparticles, and their potential for skin sensitization and cytotoxicity were evaluated, respectively. We also confirmed the sensitizing ability of silica nanoparticles in the auricle-lymph nodes of BALB/C mice by in-vivo analysis. As a result, silica nanoparticles showed high protein binding and reactive oxygen species (ROS) mediated cytotoxicity, but no significant observation of skin sensitization indicators was observed. Although more studies are needed to elucidate the mechanism of skin sensitization by nanomaterials, the results of this study showed that silica nanoparticles did not induce skin sensitization.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 29
Author(s):  
Seung Kyun Yoon ◽  
Jin Ho Yang ◽  
Hyun Tae Lim ◽  
Young-Wook Chang ◽  
Muhammad Ayyoob ◽  
...  

Herein, spinal fixation implants were constructed using degradable polymeric materials such as PGA–PLA block copolymers (poly(glycolic acid-b-lactic acid)). These materials were reinforced by blending with HA-g-PLA (hydroxyapatite-graft-poly lactic acid) and PGA fiber before being tested to confirm its biocompatibility via in vitro (MTT assay) and in vivo animal experiments (i.e., skin sensitization, intradermal intracutaneous reaction, and in vivo degradation tests). Every specimen exhibited suitable biocompatibility and biodegradability for use as resorbable spinal fixation materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3337
Author(s):  
Sara Hooshmand ◽  
Sahar Mollazadeh ◽  
Negar Akrami ◽  
Mehrnoosh Ghanad ◽  
Ahmed El-Fiqi ◽  
...  

Exploring new therapies for managing skin wounds is under progress and, in this regard, mesoporous silica nanoparticles (MSNs) and mesoporous bioactive glasses (MBGs) offer great opportunities in treating acute, chronic, and malignant wounds. In general, therapeutic effectiveness of both MSNs and MBGs in different formulations (fine powder, fibers, composites etc.) has been proved over all the four stages of normal wound healing including hemostasis, inflammation, proliferation, and remodeling. The main merits of these porous substances can be summarized as their excellent biocompatibility and the ability of loading and delivering a wide range of both hydrophobic and hydrophilic bioactive molecules and chemicals. In addition, doping with inorganic elements (e.g., Cu, Ga, and Ta) into MSNs and MBGs structure is a feasible and practical approach to prepare customized materials for improved skin regeneration. Nowadays, MSNs and MBGs could be utilized in the concept of targeted therapy of skin malignancies (e.g., melanoma) by grafting of specific ligands. Since potential effects of various parameters including the chemical composition, particle size/morphology, textural properties, and surface chemistry should be comprehensively determined via cellular in vitro and in vivo assays, it seems still too early to draw a conclusion on ultimate efficacy of MSNs and MBGs in skin regeneration. In this regard, there are some concerns over the final fate of MSNs and MBGs in the wound site plus optimal dosages for achieving the best outcomes that deserve careful investigation in the future.


2021 ◽  
pp. 088532822110038
Author(s):  
Mohammad Yousef Memar ◽  
Mina Yekani ◽  
Hadi Ghanbari ◽  
Edris Nabizadeh ◽  
Sepideh Zununi Vahed ◽  
...  

The aims of the present study were the determination of antimicrobial and antibiofilm effects of meropenem-loaded mesoporous silica nanoparticles (MSNs) on carbapenem resistant Pseudomonas aeruginosa ( P. aeruginosa) and cytotoxicity properties in vitro. The meropenem-loaded MSNs had shown antibacterial and biofilm inhibitory activities on all isolates at different levels lower than MICs and BICs of meropenem. The viability of HC-04 cells treated with serial concentrations as MICs and BICs of meropenem-loaded MSNs was 92–100%. According to the obtained results, meropenem-loaded MSNs display the significant antibacterial and antibiofilm effects against carbapenem resistant and biofilm forming P. aeruginosa and low cell toxicity in vitro. Then, the prepared system can be an appropriate option for the delivery of carbapenem for further evaluation in vivo assays.


Langmuir ◽  
2014 ◽  
Vol 30 (26) ◽  
pp. 7867-7877 ◽  
Author(s):  
Liangliang Dai ◽  
Jinghua Li ◽  
Beilu Zhang ◽  
Junjie Liu ◽  
Zhong Luo ◽  
...  

2020 ◽  
Author(s):  
Guiqing Zhou ◽  
Jianhui Liu ◽  
Xiangyang Li ◽  
Yujian Sang ◽  
Yue Zhang ◽  
...  

Abstract Background: Silica nanoparticles (SiNPs) are found in environmental particulate matter and are proven to have adverse effects on fertility. The relationship and underlying mechanisms between miRNAs and apoptosis induced by SiNPs during spermatogenesis is currently ambiguous. Experimental design: The present study was designed to investigate the role of miRNA-450b-3p in the reproductive toxicity caused by SiNPs. In vivo, 40 male mice were randomly divided into control and SiNPs groups, 20 per group. The mice in the SiNPs group were administrated 20 mg/kg SiNPs by tracheal perfusion once every 5 days, for 35 days, and the control group were given the equivalent of a normal luminal saline. In vitro, spermatocyte cells were divided into 0 and 5 μg/mL SiNPs groups, after passaged for 30 generations, the GC-2spd cells in 5 μg/mL SiNPs groups were transfected with miRNA-450b-3p and its mimic and inhibitor. Results: In vivo, the results showed that SiNPs damaged tissue structures of testis, decreased the quantity and quality of the sperm, reduced the expression of miR-450b-3p, and increased the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, and Caspase-3 in the testis. In vitro, SiNPs obviously repressed the viability and increased the LDH level and apoptosis rate, decreased the levels of the miR-450b-3p, significantly enhanced the protein expressions of the MTCH2, BID, BAX, Cytochrome C, Caspase-9, Caspase-3; while the mimic of miR-450b-3p reversed the changes induced by SiNPs, but inhibitor further promoted the effects induced by SiNPs.Conclusion: The result suggested that SiNPs could induce the spermatocyte apoptosis by inhibiting the miR-450b-3p expression to target promoting the MTCH2 resulting in activating mitochondrial apoptotic signaling pathways in the spermatocyte cells.


Biomaterials ◽  
2018 ◽  
Vol 159 ◽  
pp. 82-90 ◽  
Author(s):  
Feiyi Wang ◽  
Ge Xu ◽  
Xianfeng Gu ◽  
Zhijun Wang ◽  
Zhiqiang Wang ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (39) ◽  
pp. 18031-18036 ◽  
Author(s):  
Giuseppe Ferrauto ◽  
Fabio Carniato ◽  
Enza Di Gregorio ◽  
Mauro Botta ◽  
Lorenzo Tei

A nanosystem based on mesoporous silica functionalized with ICG and the chemotherapeutic drug mitoxantrone has been exploited to introduce an innovative photoacoustic ratiometric approach for the assessment of drug release both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document