Biological nitrogen fixation, accumulation of soil nitrogen and nitrogen balance for white clover (Trifolium repens L.) and field pea (Pisum sativum L.) grown for seed

2000 ◽  
Vol 68 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Kuldip Kumar ◽  
Kuan M Goh
2000 ◽  
Vol 185 (4) ◽  
pp. 241-247 ◽  
Author(s):  
M. T. Abberton ◽  
J. H. MacDuff ◽  
S. Vagg ◽  
A. H. Marshall ◽  
T. P. T. Michaelson-Yeates

2013 ◽  
Vol 10 (12) ◽  
pp. 8269-8281 ◽  
Author(s):  
T. Watanabe ◽  
S. Bowatte ◽  
P. C. D. Newton

Abstract. Using the δ15N natural abundance method, we found that the fraction of nitrogen derived from atmospheric N (%Ndfa) in field-grown white clover (Trifolium repens L.) plants was significantly lower (72.0% vs. 89.8%, p = 0.047 in a grassland exposed to elevated CO2 for 13 yr using free air carbon dioxide enrichment (FACE). Twelve months later we conducted an experiment to investigate the reasons behind the reduced N fixation. We took cuttings from white clover plants growing in the FACE and established individual plants in a glasshouse using soil from the appropriate ambient or elevated CO2 treatments. The established plants were then transplanted back into their "rings of origin" and sampled over a 6-week period. We used molecular ecological analyses targeting nifH genes and transcripts of rhizobia in symbiosis with white clover (Trifolium repens L.) to understand the potential mechanisms. Shoot biomass was significantly lower in eCO2, but there was no difference in nodule number or mass per plant. The numbers of nifH genes and gene transcripts per nodule were significantly reduced under eCO2, but the ratio of gene to transcript number and the strains of rhizobia present were the same in both treatments. We conclude that the capacity for biological nitrogen fixation was reduced by eCO2 in white clover and was related to the reduced rhizobia numbers in nodules. We discuss the finding of reduced gene number in relation to factors controlling bacteroid DNA amount, which may imply an influence of nitrogen as well as phosphorus.


2018 ◽  
Author(s):  
Thomas Turpin-Jelfs ◽  
Katerina Michaelides ◽  
Joel A. Biederman ◽  
Alexandre M. Anesio

Abstract. Transitions from grass- to shrub-dominated states in drylands by woody plant encroachment represent significant forms of land cover change with the potential to alter the spatial distribution and cycling of soil resources. Yet an understanding of how this phenomenon impacts the soil nitrogen pool, which is essential to primary production in arid and semiarid systems, is poorly resolved. In this study, we quantified how the distribution and speciation of soil nitrogen, as well as rates of free-living biological nitrogen fixation, changed along a gradient of increasing mesquite (Prosopis velutina Woot.) cover in a semiarid grassland of the Southwestern US. Our results show that site-level concentrations of total nitrogen remain unchanged with increasing shrub cover as losses from intershrub areas (sum of grass and bare-soil cover) are proportional to increases in soils under shrub canopies. However, despite the similar carbon-to-nitrogen ratio and microbial biomass of soil from intershrub and shrub areas at each site, site-level concentrations of inorganic nitrogen increase with shrub cover due to the accumulation of ammonium and nitrate in soils beneath shrub canopies. Using the acetylene reduction assay technique, we found increasing ratios of inorganic nitrogen-to-bioavailable phosphorus inhibit rates of biological nitrogen fixation by free-living soil bacteria. Consequently, we conclude that shrub encroachment has the potential to significantly alter the dynamics of soil nitrogen cycling in dryland systems.


Sign in / Sign up

Export Citation Format

Share Document