Predation on Zebra Mussels by Freshwater Drum and Yellow Perch in Western Lake Erie

1997 ◽  
Vol 23 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Todd W. Morrison ◽  
William E. Lynch ◽  
Konrad Dabrowski
1998 ◽  
Vol 32 (24) ◽  
pp. 3862-3867 ◽  
Author(s):  
Heather A. Morrison ◽  
Frank A. P. C. Gobas ◽  
Rodica Lazar ◽  
D. Michael Whittle ◽  
G. Douglas Haffner

1973 ◽  
Vol 30 (11) ◽  
pp. 1697-1703 ◽  
Author(s):  
Charles A. Barans ◽  
Richard A. Tubb

When four species of fish were taken from western Lake Erie in each of four seasons and held usually for less than 7 days at ambient lake temperatures, the temperatures they selected during 2–3 days in a horizontal temperature gradient differed seasonally. The differences were largely attributable to the conditions at which the fish had been acclimatized in the lake, and were modified by acclimation during 2–3 days in the gradient.The selected temperatures provided insights into the temperatures that might be selected by these species each season if the lake basin or other waters with similar seasonal ambient temperatures were subjected to thermal discharges. Temperatures selected were above ambient lake temperatures except for emerald shiners (Notropis atherinoides) in summer and fall. In general, white bass (Morone chrysops) and smallmouth bass (Micropterus dolomieui) selected a high range in temperatures throughout the year (18–30 C and 18–31 C, respectively), yellow perch (Perca flavescens) an intermediate range (10–29 C) and emerald shiners the lowest range (6–23 C). Three of the species were distributed within a relatively precise temperature range in the summer and within a larger range during other seasons; emerald shiners selected a narrow range during all seasons. A fairly stable temperature preference was usually reached within several hours in summer, but the temperatures selected by three species generally increased with time in the gradient during the other seasons; emerald shiners selected constant temperatures in all seasons. Temperatures selected by young and adults differed mainly in yellow perch and emerald shiners in summer and winter, when the lake temperatures fluctuated least.


2016 ◽  
Vol 73 (3) ◽  
pp. 416-426 ◽  
Author(s):  
Reed M. Brodnik ◽  
Michael E. Fraker ◽  
Eric J. Anderson ◽  
Lucia Carreon-Martinez ◽  
Kristen M. DeVanna ◽  
...  

Ability to quantify connectivity among spawning subpopulations and their relative contribution of recruits to the broader population is a critical fisheries management need. By combining microsatellite and age information from larval yellow perch (Perca flavescens) collected in the Lake St. Clair – Detroit River system (SC-DRS) and western Lake Erie with a hydrodynamic backtracking approach, we quantified subpopulation structure, connectivity, and contributions of recruits to the juvenile stage in western Lake Erie during 2006–2007. After finding weak (yet stable) genetic structure between the SC-DRS and two western Lake Erie subpopulations, microsatellites also revealed measurable recruitment of SC-DRS larvae to the juvenile stage in western Lake Erie (17%–21% during 2006–2007). Consideration of precollection larval dispersal trajectories, using hydrodynamic backtracking, increased estimated contributions to 65% in 2006 and 57% in 2007. Our findings highlight the value of complementing subpopulation discrimination methods with hydrodynamic predictions of larval dispersal by revealing the SC-DRS as a source of recruits to western Lake Erie and also showing that connectivity through larval dispersal can affect the structure and dynamics of large lake fish populations.


1994 ◽  
Vol 51 (10) ◽  
pp. 2234-2242 ◽  
Author(s):  
Don W. Schloesser ◽  
Thomas F. Nalepa

Unionid bivalves and attached epizoic zebra mussels (Dreissena polymorpha) were collected at one index station in 1989, 1990, and 1991 and at 17 stations in 1991 in offshore waters of western Lake Erie of the Laurentian Great Lakes. Sampling at the index station revealed that the proportion of live unionids declined from 53% in September 1989 to 17% in May–June 1990 and to 0% in September 1990: this 100% mortality coincided with heavy infestation by zebra mussels. Quantitative sampling with a Ponar grab at the 17 stations in 1991 revealed a widespread and dramatic reduction in unionid populations. In 1982, five unionid species occurred at 35% of the stations at a density of 4/m2, whereas in 1991, no live unionid species were found. Qualitative sampling with an epibenthic sled at the 17 stations in 1991 yielded only 4 live specimens of 2 species (Amblema plicata plicata and Fusconaia flava) and 187 dead specimens of 10 species. These and other results indicate that unionid populations are being negatively affected by zebra mussels in the Great Lakes. Similar impacts on unionids are expected to occur where zebra mussels become abundant throughout North America.


1997 ◽  
Vol 54 (12) ◽  
pp. 2743-2751 ◽  
Author(s):  
Ann M Stoeckmann ◽  
David W Garton

We constructed a balanced energy budget for zebra mussels (Dreissena polymorpha) from the western basin of Lake Erie during the active growth and reproductive season (May-October). We measured metabolic costs (oxygen consumption and ammonia excretion), body mass change, and feces production weekly and marked mussels to quantify shell growth. Costs of reproduction were measured by inducing spawning four times using serotonin and collecting gametes. After conversion to calories, all energy budget components were combined with published length-frequency distributions and mussel densities to estimate population consumption. We estimated that individual zebra mussel consumption averaged 3.16 cal ·day-1 (1 cal = 4.1868 J). Metabolic costs account for >90% of energy consumption. Mussels <15 mm increased in body mass whereas mussels >15 mm allocated energy to reproduction in lieu of somatic growth. Our estimates of population consumption were sensitive to mussel size distribution, with the most abundant size-class responsible for the greatest proportion of population consumption. Based on published estimates for primary production in western Lake Erie, our energy budget estimated that zebra mussels (10 000 - 50 000 mussels ·m-2) potentially consume an equivalent of 10-50% of summer primary production.


Sign in / Sign up

Export Citation Format

Share Document