Stability-indicating HPTLC determination of tizanidine hydrochloride in bulk drug and pharmaceutical formulations

2003 ◽  
Vol 33 (4) ◽  
pp. 545-552 ◽  
Author(s):  
K.R Mahadik ◽  
A.R Paradkar ◽  
Himani Agrawal ◽  
Neeraj Kaul
2013 ◽  
Vol 96 (3) ◽  
pp. 580-586 ◽  
Author(s):  
Yousry M Issa ◽  
Emad M Hussien ◽  
Magda M Ibrahim ◽  
Fatma M Abdel-Gawad ◽  
Saadia Barakat

Abstract Two stability-indicating methods were developed for the determination of candesartan cilexetil in the presence of its degradation products. The first method uses isocratic RP-HPLC with an Agilent C18 column. The mobile phase was phosphate buffer (pH = 2.8 ± 0.1)–acetonitrile (60 + 40, v/v). The flow rate was 2.0 mL/min, and the UV detection was at 254 nm. The second method depends on TLC-densitometric measurements of drug spots at 254 nm. The separation was carried out on silica gel 60 F254 plates using ethyl acetate–methanol–toluene– ammonia 33% (40 + 25 + 20 + 2, v/v/v/v) mobile phase. The methods were validated according to U.S. Pharmacopeia guidelines, and the acceptance criteria for accuracy, precision, linearity, specificity, robustness, LOD, LOQ, and system suitability were met in all cases. Linear ranges of the methods were 10.0–200.0 μg/mL and 1.0–9.0 μg/spot for HPLC and TLC, respectively. The proposed methods were successfully applied to the drug in bulk powder, in laboratory-prepared mixtures with its degradation products, and in commercially available tablets. The results were compared statistically at the 95% confidence level with each other. There were no significant differences between the mean recovery and precision of the two methods.


Author(s):  
Vishal N Kushare ◽  
Sachin S Kushare

The present paper describes stability indicating high-performance thin-layer chromatography (HPTLC) assay method for Ozagrel in bulk drugs. The method employed TLC aluminium plates precoated with silica gel 60F-254 as the stationary phase. The solvent system consisted of toluene: methanol: triethylamine (6.5: 4.0: 0.1 v/v/v). The system was found to give compact spot for Ozagrel (Rf value of 0.40 ± 0.010). Densitometric analysis of Ozagrel was carried out in the absorbance mode at 280 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2 = 0.999 with respect to peak area in the concentration range 30 - 120 ng/spot. The developed HPTLC method was validated with respect to accuracy, precision, recovery and robustness. Also to determine related substance and assay determination of Ozagrel that can be used to evaluate the quality of regular production samples. The developed method can also be conveniently used for the assay determination of Ozagrel in pharmaceutical formulations. The limits of detection and quantitation were 4.069 and 12.332 ng/spot, respectively by height. Ozagrel was subjected to acid and alkali hydrolysis, oxidation, photochemical and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and heat conditions. This indicates that the drug is susceptible to acid, base hydrolysis, oxidation and heat. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of said drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Ozagrel in bulk drug and tablet formulation.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


Sign in / Sign up

Export Citation Format

Share Document