Effect of vitamin E and eccentric exercise on selected biomarkers of oxidative stress in young and elderly men

2003 ◽  
Vol 34 (12) ◽  
pp. 1575-1588 ◽  
Author(s):  
Jennifer M Sacheck ◽  
Paul E Milbury ◽  
Joseph G Cannon ◽  
Ronenn Roubenoff ◽  
Jeffrey B Blumberg
2004 ◽  
Vol 1031 (1) ◽  
pp. 361-364 ◽  
Author(s):  
BRIGITTE M. WINKLHOFER-ROOB ◽  
ANDREAS MEINITZER ◽  
MICHAELA MARITSCHNEGG ◽  
JOHANNES M. ROOB ◽  
GHOLAMALI KHOSCHSORUR ◽  
...  

2007 ◽  
Vol 46 (8) ◽  
pp. 468-475 ◽  
Author(s):  
Delphine Gitenay ◽  
Bernard Lyan ◽  
Mathieu Rambeau ◽  
Andrzej Mazur ◽  
Edmond Rock

2012 ◽  
Vol 53 ◽  
pp. S110
Author(s):  
Scott W Leonard ◽  
Stefanie B Murer ◽  
Isabelle Aeberli ◽  
Christian P Braegger ◽  
Alan W Taylor ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 279
Author(s):  
María F. Torre ◽  
María Martinez-Ferran ◽  
Néstor Vallecillo ◽  
Sergio L. Jiménez ◽  
Carlos Romero-Morales ◽  
...  

Muscle damage induced by exercise may have several consequences such as delayed-onset muscle soreness, a side-effect of the release of free radicals during oxidative stress. To mitigate the oxidative stress cascade, the oral intake of antioxidants has been assessed by several research groups. This review examines whether supplementation with vitamin C and/or vitamin E is able to prevent or attenuate delayed-onset muscle soreness after eccentric exercise. The PubMed, Web of Science, Medline, and Embase databases were searched to identify studies meeting the inclusion criteria: primary randomized control trials, healthy male and female participants aged 16–80 years, and an intervention consisting of the intake of vitamin C and/or vitamin E without other supplements plus a controlled eccentric exercise regimen. Further requirements were the measurement of muscle soreness or markers of delayed-onset muscle soreness. All original full-text articles in English or translated into English published from January 2000 to June 2020 were considered for this review. Fourteen studies were finally identified, including 280 participants, 230 men, and 50 women aged 16–30 years. All participants were healthy individuals with different starting levels of physical activity. Supplementation was acute in two studies and chronic in 12, and its consisted of vitamin C in eight studies, vitamin E in two studies, and both in four studies. Only in 3 of the 14 studies was muscle soreness found to be significantly reduced in response to vitamin C and/or vitamin E supplementation at all time points when compared to the placebo group. Despite some studies showing the beneficial effects of chronic supplementation with these vitamins on muscle soreness manifesting 24–72 h after eccentric exercise, the evidence is so far insufficient to confirm that the intake of antioxidant vitamins is able to minimize delayed-onset muscle soreness in this context.


2019 ◽  
Vol 70 (1) ◽  
pp. 78-83
Author(s):  
Alexandra Totan ◽  
Daniela Gabriela Balan ◽  
Daniela Miricescu ◽  
Radu Radulescu ◽  
Iulia Ioana Stanescu ◽  
...  

Oxidative stress (OS) plays an important role in NAFLD molecular mechanism. Nanoencapsulation represents a novel strategy to enhance therapeutic potential of conventional drugs. Our study analyses the encapsulated vitamin E effect on lipid metabolism and oxidative stress biomarkers in NAFLD rats. Animals were divided into 3 groups : G1 - the normal diet group; G2- the high caloric diet group ; G3 - high-caloric diet group receiving PLGA-vit E, 50 mg / kg. Serum advanced human oxidative protein (AOPP), total antioxidant capacity (TAC) and vitamin E were analysed using ELISA technique. Our results showed significant increase of G2 GPT, ALP, GGT, TG, glucose, TC and AOPP, versus G1 ( P [ 0.05) and a significant decrease of G2 serum TAC and vitamin E versus G1 results ( p = 0.01 and 0.01). Vitamin E nanoparticles (G3) caused a significant increase of TAC and significant decrease of serum AOPP, versus G2 (p [ 0.01). Results showed a significant reduction of GPT, GGT, ALP, TG and total cholesterol ( p [0.05) in G3 versus G2. PLGA nanoparticles should be considered an attractive and promising alternative to improve the bioavailability and biological activity of vitaminE.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 145
Author(s):  
Ashley K. Putman ◽  
G. Andres Contreras ◽  
Lorraine M. Sordillo

Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.


Sign in / Sign up

Export Citation Format

Share Document