Comparative release kinetics of some co-polymeric nanoparticles for drug delivery

1998 ◽  
Vol 6 ◽  
pp. S4
2016 ◽  
Vol 696 ◽  
pp. 245-249
Author(s):  
Ahmed El-Ghannam

Silica-calcium-phosphate composite (SCPC) is a drug delivery platform that has successfully demonstrated the ability to bind and release several therapeutics including antibiotics, peptides, anticancer drugs, and growth factors. It has successfully demonstrated a unique capacity for bone regeneration. The present studies address the effect of the phosphate and silicate functional groups on drug binding and controlled release kinetics of Cisplatin (Cis). Moreover, the roles of ceramic composition and resorbability on rhBMP2 release kinetics and bone regeneration in a critical size calvarial defect in rabbit is presented.


Author(s):  
Maher Amer ◽  
Roland K. Chen

Abstract Microneedles (MNs) provide a minimally invasive alternative to intravitreal injections and a promising means to sustainable ocular drug delivery. To optimize the sustained drug release profile and to ease the administration of the MN array to the eye, the number of MNs in an MN array and their layout need to be carefully selected. In this study, the drug release kinetics of MN arrays with varying numbers of MNs (8, 12, and 16) is studied over a four-week period. The MN arrays show a much more uniform drug release profile than the single injections. Only the 16-needle MN array fully released all the amount of loaded drug at the end of the 4-week period. Both 8- and 12-needle arrays showed a steady release rate over the 4-week period, which is the longest sustained release duration that has been reported. Zero-order models are created to predict drug release profiles for the three MN arrays. It is estimated that the MN array with 8 needles can deliver the drug for up to 6 weeks. The models can be used to design MN arrays with a given targeted therapeutic index for sustained drug delivery.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 732
Author(s):  
Jingwen Weng ◽  
Henry H. Y. Tong ◽  
Shing Fung Chow

The in vitro release study is a critical test to assess the safety, efficacy, and quality of nanoparticle-based drug delivery systems, but there is no compendial or regulatory standard. The variety of testing methods makes direct comparison among different systems difficult. We herein proposed a novel sample and separate (SS) method by combining the United States Pharmacopeia (USP) apparatus II (paddle) with well-validated centrifugal ultrafiltration (CU) technique that efficiently separated the free drug from nanoparticles. Polymeric drug nanoparticles were prepared by using a four-stream multi-inlet vortex mixer with d-α-tocopheryl polyethylene glycol 1000 succinate as a stabilizer. Itraconazole, cholecalciferol, and flurbiprofen were selected to produce three different nanoparticles with particle size <100 nm. By comparing with the dialysis membrane (DM) method and the SS methods using syringe filters, this novel SS + CU technique was considered the most appropriate in terms of the accuracy and repeatability to provide the in vitro release kinetics of nanoparticles. Interestingly, the DM method appeared to misestimate the release kinetics of nanoparticles through separate mechanisms. This work offers a superior analytical technique for studying in vitro drug release from polymeric nanoparticles, which could benefit the future development of in vitro-in vivo correlation of polymeric nanoparticles.


Author(s):  
Sankha Bhattacharya

Background:: Due to the higher intake of junk food and unhealthy lifestyle, the percentage of U.S. adults aged 50 to 75 years who were up-to-date with colorectal cancer screening increased 1.4 percentage points, from 67.4% in 2016 to 68.8% in 2018. This represents an additional 3.5 million adults screened for colorectal cancer. This is a severe concern of this research, and an attempt was made to prepare a target-specific formulation that could circumvent chemotherapyrelated compilation and improvise higher cellular uptake. The fundamental agenda of this research was to prepare and develop Anti-EGFR mAb and 5-Fluorouracil (5-FU) fabricated polymeric nanoparticles for colorectal cancer. Objective: The main objective of this research was to prepare and evaluated more target specific formulation for the treatment of colorectal cancer. PLGA and PEG-based polymeric nanoparticles are capable of preventing opsonization via the reticuloendothelial system. Hence, prepared polymeric nanoparticles are capable of higher cellular uptake. Methods: The Poly(d,1-lactide-co-glycolide) (PLGA) & Polyethylene Glycol (PEG) were combined utilizing the ringopening polymerization method. The presence of PEG prevents opsonization and distinguished blood concentration along with enhanced targeting. The presence of PLGA benefits in the sustained release of polymeric formulations. The optimized formulation (5-FU-PLGA-PEG-NP) was lyophilized using 4% trehalose (cryoprotectants) & conjugated with Anti-EGFR mAb on its surface to produce Anti-EGFR-5-FU-PLGA-PEG-NP; the final formulation, which increases target specificity and drug delivery system of nanoparticles. Results: The spherical shaped optimized formulation; 5-FU-PLGA-PEG-NP-3 was found to have higher percentage drug entrapment efficacy (71.23%), higher percentage drug content (1.98 ± 0.34%) with minimum particles size (252.3nm) & anionic zeta potential ( -31.23mV). The IC50 value of Anti-EGFR-5-FU-PLGA-PEG-NP was 1.01 µg/mL after 48 hours incubation period in the HCT 116 cell line, indicating higher anticancer effects of the final formulation. Conclusions: From the outcomes of various experiments, it was concluded that Anti-EGFR-5-FU-PLGA-PEG-NP has biphasic drug release kinetics, higher cellular uptake & higher cytotoxicity. Therefore, Anti-EGFR-5-FU-PLGA-PEG-NP holds excellent potential for drug delivery to EGFR positive colorectal cancer cells.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 742 ◽  
Author(s):  
Thashini Moodley ◽  
Moganavelli Singh

The fruition, commercialisation and clinical application combining nano-engineering, nanomedicine and material science for utilisation in drug delivery is becoming a reality. The successful integration of nanomaterial in nanotherapeutics requires their critical development to ensure physiological and biological compatibility. Mesoporous silica nanoparticles (MSNs) are attractive nanocarriers due to their biodegradable, biocompatible, and relative malleable porous frameworks that can be functionalized for enhanced targeting and delivery in a variety of disease models. The optimal formulation of an MSN with polyethylene glycol (2% and 5%) and chitosan was undertaken, to produce sterically stabilized, hydrophilic MSNs, capable of efficient loading and delivery of the hydrophobic anti-neoplastic drug, doxorubicin (DOX). The pH-sensitive release kinetics of DOX, together with the anticancer, apoptosis and cell-cycle activities of DOX-loaded MSNs in selected cancer cell lines were evaluated. MSNs of 36–60 nm in size, with a pore diameter of 9.8 nm, and a cumulative surface area of 710.36 m2/g were produced. The 2% pegylated MSN formulation (PCMSN) had the highest DOX loading capacity (0.98 mgdox/mgmsn), and a sustained release profile over 72 h. Pegylated-drug nanoconjugates were effective at a concentration range between 20–50 μg/mL, inducing apoptosis in cancer cells, and affirming their potential as effective drug delivery vehicles.


2010 ◽  
Vol 168 (1-3) ◽  
pp. 127-131 ◽  
Author(s):  
Salil Desai ◽  
Jessica Perkins ◽  
Benjamin S. Harrison ◽  
Jag Sankar

Langmuir ◽  
2008 ◽  
Vol 24 (1) ◽  
pp. 280-287 ◽  
Author(s):  
Shilpa Sant ◽  
Matthias Thommes ◽  
Patrice Hildgen

Sign in / Sign up

Export Citation Format

Share Document